Частотный привод своими руками
Частотный преобразователь своими руками
Частотный преобразователь своими руками — представляю вам небольшую статью о асинхронном двигателе и частотном преобразователе, который мне ранее приходилось делать.
Вот и теперь потребовался хороший привод для циркулярной пилы.
Конечно можно было бы взять в магазине фирменный частотник, но все-таки вариант самостоятельного изготовления оказался для меня наиболее приемлемым.
К тому же, качество регулировки скорости привода пилорамы не требовало абсолютной точности. Однако с нагрузками ударного типа и длительными перегрузками он должен справляться. К тому же хотелось сделать управление наиболее простым, без всяких там параметров, а просто установить пару кнопок.
Главные преимущества привода с регулировкой частоты:
- Создаем из однофазного напряжения 220v полновесные три фазы 220v, сдвиг у которых будет 120°, при этом получаем абсолютный вращательный момент с мощностью на валу
- Повышенный момент старта с плавным запуском без максимального пускового тока
- Нет сильного замагничивания и излишнего перегрева мотора, как это бывает когда применяются конденсаторы
- При необходимости можно свободно управлять скоростью вращения и менять направление
Ниже показана принципиальная схема устройства:
Трехфазный мост выполнен на гибридных IGBT транзисторах c диодами обратной проводимости.
В целом это представляет собой бустрепное управление микроконтроллером PIC16F628A, осуществляемое с помощью специализированных оптодрайверов HCPL-3120.
Во входном тракте установлен конденсатор гашения напряжения, выполняющего функцию мягкой зарядки электролитических конденсаторов в цепи постоянного напряжения.
Быстродействующая защита
Далее по схеме он зашунтирован электромагнитным реле, при этом на PIC16F628A подается цифровой логический уровень готовности. В схеме предусмотрена быстродействующая защита по току от короткого замыкания и критической перегрузке мотора, выполненная по триггерной схеме. Все это управляется при помощи двух кнопок и одного переключателя, который изменяет направление вращения вала.
Частотный преобразователь своими руками, в частности участок силовых напряжений был собран методом навесного монтажа, а контроллер размещен на печатной плате, которая показана ниже:
Постоянные резисторы с номиналом 270к, шунтирующие конденсаторы установленные в цепи затвора IGBT, запаял со стороны дорожек, так как упустил из виду сделать для них площадки. Их конечно можно заменить на smd.
Здесь показано фото печатной платы контроллера после распайки компонентов:
А это с противоположной стороны
Для подачи напряжения питания в модуль управления был изготовлен стандартный обратноходовой импульсный источник питания.
Принципиальная схема блока питания:
Чтобы изготовить частотный преобразователь своими руками в принципе можно использовать практически любой источник питания с выходным напряжением 24v.
Однако, этот блок питания должен быть стабилизированный и с задержкой напряжения на выходе с момента исчезновения напряжения сети, хотябы в пределах 3-х секунд. Это обусловлено тем, что двигатель смог отключится в случае возникновения ошибки по DC.
Достигается подбором электролитического конденсатора С1 с большим значением емкости.
Ну, а теперь нужно подробнее разобраться в самом важном компоненте данного устройства — в программе микроконтроллера.
В интернете подходящей для меня информации по этому вопросу я не нашел, хотя были предложения установить специальные фирменные контроллеры. Но как я уже говорил, мне принципиально нужно было установить, что-то собственной разработки.Приступил во всех подробностях анализировать ШИМ модуляцию, в какое время и каким способом открыть определенный транзистор…
Программа формирования задержек
Выяснились некоторые закономерности и получился образец несложной программы формирования задержек.
При ее использовании получается произвести достаточно хорошую синусоидальную ШИМ с возможностью изменять напряжение.
Естественно контроллер делать какие либо вычисления не успевал, задержки не давали того эффекта, который был нужен. Следовательно, такой вариант обсчитывания ШИМ на микроконтроллере PIC16F628A я забраковал сразу.
В результате образовалась констант матрица, а ее уже отрабатывал PIC16F628A. Они формировали и диапазон частоты и напряжение питания. Конечно эта работа по созданию данного устройства несколько затянулась.
Циркуляркой уже полным ходом пилили на конденсаторах, когда появился необходимый вариант прошивки. Первоначально тестировал схему на моторе от вентилятора, мощностью 180 Вт.
Вот фото прибора на стадии экспериментальных работ:
Частотный привод своими руками — Справочник металлиста
Впервые мир познакомился с таким устройством, как трехфазный асинхронный электродвигатель, еще в конце 19 столетия.
И начиная с того времени, его стали применять на каждом промышленном предприятии, где он стал обязательным элементом. Во время эксплуатации электродвигателя важно обеспечить его плавный пуск и остановку.
Это можно сделать только при наличии специального устройства – преобразователя частоты.
В первую очередь, целесообразно оснащать преобразователем крупные электродвигатели, обладающие высокими показателями мощности. Польза от наличия такого устройства заключается в возможности менять пусковые токи, задавая необходимую их величину.
Принцип работы частотного преобразователя
Конечно, можно регулировать пусковой ток и вручную, однако в этом случае будет тратиться определенное количество энергии впустую, что негативным образом скажется на эксплуатационном ресурсе электродвигателя.
Наблюдаемый в устройствах, не имеющих подобного приспособления, ток имеет величину, превышающую в 5-7 раз номинальное напряжение. В таких условиях невозможно создать нормальные условия для работы оборудования.
Действие такого устройства, как преобразователь частоты, основывается на использовании электронного механизма, который контролирует работу двигателя.
Но его возможности не ограничиваются лишь мягким пуском.
При помощи преобразователя частоты можно осуществлять плавную настройку работы привода, выбирая оптимальный показатель между напряжением и частотой, который рассчитывается строго по заданной формуле.
Среди достоинств такого устройства главным следует назвать то, что оно помогает уменьшить расход электроэнергии в среднем на 50%. К тому же частотный преобразователь позволяет выставлять такой режим работы, который будет в максимальной степени учитывать потребности определённого производства.
Действие подобного преобразователя основывается на принципе двойного преобразования напряжения.
- На начальном этапе выполняется регулировка напряжения сети путем его выпрямления и фильтрования, что достигается посредством использования системы конденсаторов.
- Далее настает черед электронного управления, благодаря которому для тока выставляется частота, соответствующая заранее выбранному режиму.
В результате возникают прямоугольные импульсы, которые корректируются обмоткой статора двигателя, что позволяет вывести ее на уровень синусоиды.
На что обратить внимание при выборе?
Если обратить внимание на доступные сегодня модели преобразователей, то определяющим фактором становится именно цена частотника .
Дело в том, что наибольшим функционалом обладают лишь дорогие модели пребразователей частоты.
Однако, чтобы выбираемый преобразователь смог успешно справляться с необходимыми задачами, нужно исходить из конкретных условий его использования.
- Преобразователь частоты может предусматривать два типа управления: векторное и скалярное. В первом случае можно выставить с высокой точностью необходимую величину тока. Особенностью скалярного управления является то, что устройство работает лишь в одном заданном соотношении между частотой и напряжением на выходе. Такие устройства могут использоваться лишь для обычных бытовых устройств, наподобие вентилятора.
- Характеристики мощности во многом влияют на универсальность преобразователя частоты. Это не только расширяет его возможности, но и создает меньше проблем при обслуживании.
- Для работы устройства должна быть предусмотрено сеть, обладающая максимально широким диапазоном напряжения. В этом случае уменьшается опасность, что устройство выйдет из строя в случае резких скачков. Наибольшую угрозу для оборудования представляет повышение напряжения, что может привести к взрыву сетевых конденсаторов.
- Важным параметром является и частота, значение которой должно быть достаточным для удовлетворения потребностей производства. По его нижнему пределу можно понять, насколько широкие возможности имеются для выбора оптимальной скорости привода. Если имеется необходимость в устройстве, обладающем более широким диапазоном частоты, то следует обратить внимание на модели с векторным управлением. На практике же наиболее распространены частоты с диапазоном 10-60 Гц, в редких случаях используются до 100 Гц.
- Наличие различных входов и выходов, используемых для управления. Гораздо удобнее пользоваться устройством, у которого количество подобных разъемов достаточно велико. Однако это же приводит к увеличению стоимости оборудования, а также создает трудности с правильной настройкой. В устройствах подобного типа могут быть предусмотрены три типа разъемов: дискретные, цифровые, аналоговые. Основное назначение первых заключается во вводе команд управления и вывода сообщений о событиях. При помощи цифровых разъёмов осуществляется ввод сигналов цифровых датчиков. Аналоговые же разъемы призваны решать задачу по вводу сигналов обратной связи.
- При выборе модели преобразователя следует обращать внимание на шину управления, характеристики которой должны соответствовать возможностям схемы частотного преобразователя, что проявляется в соответствующем количестве разъемов. Оптимальный вариант, когда их имеется достаточное количество на случай возможной модернизации.
- Перегрузочные способности. Рекомендуется отдавать предпочтение моделям частотников, запас мощности которых на 15% превосходит мощность используемого двигателя. Во избежание ошибок не помешает перед принятием решения ознакомиться с документацией. В них обычно приводятся все основные характеристики двигателя. Если стоит задача подобрать частотник, способное выдерживать пиковые нагрузки, то рекомендуется отдавать предпочтение оборудованию, которое сможет сохранять значение тока в условиях пиковой работы на 10% больше указанного.
Материалы
Чтобы сделать своими руками частотный преобразователь для однофазного электродвигателя, необходимо подготовить следующее:
- IR2135(IR2133) – драйвер трёхфазного моста;
- AT90SPWM3B – микроконтроллёр (используется как генератор PWM);
- программатор (например, AVReAl);
- шесть штук транзисторов IRG4BC30W;
- ЖКИ индикатор;
- шесть кнопок.
Самостоятельная сборка преобразователя частоты
Не стоит отказываться от идеи сделать своими силами преобразователь. Эту задачу решить по силам любому владельцу, учитывая, что в сети можно найти большое количество инструкций и схем по сборке подобного устройства и его подключению к асинхронному двигателю.
Рассматривая такой вариант, главное, о чем следует помнить – собираемая своими руками модель должна отличаться не только доступной ценой, но и надежностью, а также быть способна успешно решать задачи в бытовых условиях. Если же имеется потребность в устройстве для промышленного использования, то, естественно, оптимальным выбором будут преобразователи, предлагаемые магазинами.
Порядок действий по сборке схемы частотного преобразователя
Приводимая ниже схема рассчитана на проводку с напряжением 220В и одной фазой. Устройство предназначено для двигателя, мощность которого не превышает 1 кВт.
Вначале необходимо соединить между собой обмотки двигателя, для чего используется вариант «треугольник».
Основу конструкции оборудования образуют две платы. Первая будет уступать место для размещения таких элементов, как блок питания и драйвер.
Помимо них здесь будут установлены транзисторы и силовые клеммы. Вторая плата используется для крепления микроконтроллера и индикатора.Для соединения плат друг с другом используется гибкий шлейф.
Для изготовления импульсного блока питания используется обычная схема, которую можно найти в сети.
Чтобы контролировать работу двигателя, нет необходимости воздействовать на ток при помощи внешних устройств. Однако нелишним будет добавить в конструкцию микросхему(IL300) путем введения линейной развязки.
Общий радиатор используется для размещения не только транзисторов, но и диодного моста.
Обязательным является наличие оптронов ОС2-4, назначение которых заключается в дублировании кнопок управления. На ОС-1 возлагается задача по выполнению пользовательских функций.
Если выбираемый частотный преобразователь имеет одну фазу, то он может работать без трансформатора. Альтернативой ему может служить токовый шунт, который выполняется в виде четырех витков манганинового провода сечением 0,5 км на оправе 3мм. Используемый шунт можно дополнить и усилителем DA-1.
Если мощность двигателя составляет 400 Вт, то он может работать и без термодатчика. С задачей по измерению напряжения сети успешно может справиться и DA-1-2 (усилитель).
Следует позаботиться о защите кнопок, установив на них пластиковые толкатели, управление же осуществляется посредством опторазвязки.
Во время работы ротора двигателя можно выбирать любую скорость пределах частоты 1: 40. В режиме работы малых частот следует задействовать режим фиксированного напряжения.
Подключение частотного преобразователя
Если используемая проводка имеет одну фазу и напряжение 220В, то в качестве предпочтительной схемы подключения используется вариант «треугольник». Важно помнить о том, что ток на выходе может быть больше номинального не более, чем на 50%.
Если речь идет о трехфазной проводке с напряжением 380В, то для подключения к двигателю частотного преобразователя выбирается схема «звезда». Для простоты выполнения этой процедуры на преобразователе присутствуют клеммы, на поверхности которых имеются подсказки в виде букв.
- R, S, T– к этим контактам подводят провода сети в любом порядке;
- U , V , W – при помощи их выполняется включение асинхронного двигателя (в тех случаях, когда двигатель работает в режиме реверса, для возвращения к нормальному вращению достаточно любой из двух проводов поменять местами на контактах).
Обязательно в конструкции имеется клемма, используемая для заземления.
Рекомендации по обслуживанию оборудования
Чтобы собранный своими руками частотный преобразователь смог успешно выполнять свои функции на протяжении длительного времени, владелец должен выполнять следующие рекомендации:
- Следить за состоянием внутренних элементов, не допуская скопления на них пыли. При необходимости используют небольшой компрессор, поскольку пылесосу может быть не под силу удалить пыль, лежащую плотным слоем.
- Проверять работоспособность узлов и менять их при необходимости. Нормальным для электролитических конденсаторов считается срок службы длительностью 5 лет, для предохранителей – 10 лет. Вентиляторы охлаждения следует менять уже по прошествии 2-3 лет эксплуатации. Внутренние же шлейфы допускается использовать не более 6 лет.
- Необходимо следить за температурой внутренних механизмов, а также напряжением на шине постоянного тока. В случае роста температуры возникает опасность засыхания термопроводящей пасты, что может закончиться выходом из строя конденсаторов. Необходимо взять за правило наносить не реже как минимум каждые три года новый слой пасты на силовые компоненты привода.
- Необходимо в точности соблюдать условия эксплуатации. Оптимальным считается температурный режим окружающей среды на уровне до + 40 градусов. Крайне негативное влияние на работу элементов оказывают повышенная влажность и запыленность воздуха.
Самодельный частотник. Разрабатываем преобразователь вместе
Зачем нужно делать самому преобразователь для 3-фазного электромотора, и как смастерить его своими руками? Чтобы защитить окружающую природу повсюду создаются правила, которые рекомендуют изготовителям электрических устройств делать продукцию, которая будет экономить электрическую энергию. Часто это бывает достигнуто правильным управлением частотой вращения электромотора. Преобразователь частоты легко решает эту задачу.
Частотник электромотора с тремя фазами по-разному называют: инвертор, частотный изменитель тока, приводной механизм, регулируемый частотой. Сегодня такие устройства делают разные заводы, но многие умельцы своими руками изготавливают не хуже.
Как я сам изготовил частотный преобразователь
Я изготовил преобразователь частоты и асинхронный привод для моего товарища. Ему нужен был привод для пилорамы, мощный и хороший. Так как я любил заниматься электроникой, то сразу предложил ему такую схему:
Трехфазный мост на транзисторах с диодами обратной связи я использовал, которые имелись. Управление осуществил через оптодрайвер HCPL 3120 микроконтроллером PIC16F628A.
У входа припаял гасящую емкость, чтобы электролиты заряжались плавно. Затем припаял шунтовое реле. Еще установил триггер защиты тока от замыкания и перегрузки.
Для управления установил две кнопки и выключатель для обратного вращения.
Силовую часть я собрал на навесном монтаже.
Резисторы, соединил параллельно по 270 кОм с помощью затворных проходных конденсаторов, позади платы их напаял. Моя плата показана на внешнем виде:
Вид этой моей платы с другой стороны:
Для подключения питающего напряжения я собрал блок питания, работающий на импульсах, обратноходовой. Вот привожу схему этого блока питания:
Как я запрограммировал микроконтроллер? Простые моргалки для меня не представляли какой-то проблемы. Получились константы в виде матрицы, над которой работал мой контроллер. Частота и напряжение были заданы этими величинами. Всю схему работы проверил на моторчике вентилятора небольшой мощности, 200 Вт. Эта моя конструкция выглядела так:
Начальные эксперименты дали хороший результат. Затем доработал программу. Раскрутил двигатель на 4 кВт, и пошел собирать управление пилорамой.При монтаже у нас с товарищем случайно произошло замыкание и сработала защита, проверили ее работу. Мотор на 2 кВт 1500 оборотов с легкостью пилил доски.
Сейчас программа еще дорабатывается для раскрутки двигателя выше номинала.
Характеристики: частота от 2 до 50 герц с шагом 1,5 герц, синхронная частота, постоянно меняется, разбег от 1500 до 3500 герц, управление скалярного типа U/F, мощность мотора до 5 кВт.
Удерживаем кнопку RUN и разгоняем двигатель. Отпускаем, частота держится на уровне. Когда загорается светодиод, то привод готов к запуску.
Как сделать инвертор самому своими руками?
Вместе с производством заводских инверторов любители делают их сами, своими руками. Здесь нет ничего сложного. Такой преобразователь частоты преобразовывает одну фазу, делает из нее три фазы. Электродвигатель с похожим частотником используют в домашних условиях, мощность его не будет теряться.
Блок выпрямления в схеме расположен в начале. Далее идут фильтры, которые отсекают токовые переменные. Чтобы изготовить данные инверторы применяют транзисторы IGBT.
За тиристорами стоит будущее, хотя и в настоящем они уже применяются давно. Купленный частотник на биполярных транзисторах стоит дорого и мало где применяется (сервоприводы, металлорежущие станки с векторным управлением).
Эти приводы как транспортеры и конвейеры, карусельные станки, станции подкачки воды, климатические системы управления — это большая часть от всего применения устройств заводов, где лучше использовать частотники для управления электромоторами с короткозамкнутыми якорями и можно делать управление оборотами двигателя, если подать потенциал, изменяя частоту до 50 герц.
Приведем простые примеры частотных преобразователей, которые тянули мощные электродвигатели тепловозов и электричек, имеющих в своем составе много вагонов товарных платформ, большие станции с насосами напряжением 600 вольт, обеспечивающие городские районы питьевой водой.
Очевидно, что данные сильные электродвигатели не подойдут на биполярных транзисторах. Поэтому применяют активные тиристоры типа GTO, GCT, IGCT и SGCT. Они преобразуют из постоянного тока токовую сеть с тремя фазами с хорошей мощностью.
Однако, имеются простые схемы на тиристорах простого типа, закрывающиеся током катода обратного. Такие тиристоры не будут действовать в режиме ШИМ, их хорошо применяют в прямой регулировке электромоторов, без тока постоянного размера.
Преобразователи частоты на тиристорах в застойные времена были задействованы для моторов на постоянном токе. Фирма Сименс изобрела векторные частотники, преобразившие промышленность до неузнаваемости.Стоимость всех деталей самодельного инвертора существенно ниже цены заводского устройства.
Такие самодельные устройства хорошо подходят для электромоторов мощностью до 0,75 кВт.
Для чего предназначен инвертор — его принцип действия
Инвертор действует на частоту вращения асинхронных моторов. Моторы переделывают электроэнергию в механическое движение. Вращательное движение преобразуется в движения механические. Это создает большое удобство. Асинхронные моторы очень популярны во многих сторонах жизни людей.
Обороты электродвигателя можно изменять и другими устройствами. Но, у них много недостатков. Они сложны в пользовании, дорого стоят, работают с плохим качеством, разбег регулировки маленький.
Частотный преобразователь для мотора с тремя фазами легко решает эту проблему. Все знают, что пользование частотниками для изменения частоты вращения есть самый хороший и правильный метод. Такой аппарат дает мягкий пуск и торможение, а также контролирует многие процессы, происходящие в моторе. Аварийные ситуации при этом сводятся на нет.
Чтобы плавно и быстро регулировать работу двигателя, специалисты разработали специальную электрическую схему. Использование в работе частотника дает возможность работать двигателю без перерыва, экономично. Коэффициент полезного действия его достигает 98%. Это происходит за счет повышения частоты коммутации. Механические устройства не могут выполнить такие функции.
Как регулировать скорость инвертором?
Как частотник может изменять частоту вращения трехфазного электромотора? Сначала он меняет напряжение сетевое. Далее, из него получается нужная амплитуда и частота напряжения, поступает на электромотор.
Разбег интервала регулирования скорости преобразователем большой. Можно изменять вращение мотора в другую сторону. Чтобы двигатель не вышел из строя, нужно брать во внимание данные из его характеристики, допускаемые обороты, мощность.
Из чего состоит привод регулирования?
Схема частотника.
Он имеет в составе три звена:
- выпрямитель, дающий потенциал постоянного тока при включении к питанию электрической сети. Сеть может быть управляемой или нет;
- фильтрующий элемент, который сглаживает выходное напряжение (применяется емкость);
- инвертор, который производит нужную частоту потенциала, крайнего звена возле электромотора.
Режим управления частотников
Их делят на виды управления оборотами двигателя:
- скалярное управление (нет связи с обратной стороны);
- режим векторного управления (связь с обратной стороны имеется, или отсутствует).
В первом случае управляется статор с его магнитным полем. Управление вектором учитывает действие полей магнита ротора и статора, улучшается крутящий момент при разных скоростях вращения. Это и есть основное различие их режимов управления.
Способ векторов точнее и эффективнее. Обслуживать его дороже. Он больше подходит для специалистов с хорошими профессиональными умениями и знаниями. Метод управления скалярного типа наиболее прост в работе. Применяется он с выходными параметрами, не требующими регулировки особой точности.
Как подключить инвертор треугольником и звездой?
Когда мы купили инвертор по недорогой цене, то возникает необходимость: подключение его к электромотору самому без специалистов. Сначала надо установить для безопасности автоматический выключатель для обесточивания. Если возникнет короткое замыкание на фазах, то отключится вся система.
Подключить частотник к мотору можно звездой или треугольником.
Когда привод регулирования с одной фазой, то контакты электромотора присоединяют треугольником. Тогда мощность не потеряется. Мощность этого преобразователя частоты будет не более 3 кВт.
Инверторы с тремя фазами технически наиболее современны. Они питаются от заводских трехфазных сетей, подключаются звездой.
Для ограничения тока пуска и уменьшения момента пуска при пуске электромотора свыше 5 кВт можно использовать способ включения треугольник и звезда.
При включении статора применяется схема звезды, а если обороты двигателя нормальные, то переходят на вариант треугольника. Но это используется при существовании возможности соединения по двум схемам.
Отмечаем, что в варианте звезда-треугольник большие перепады тока будут всегда. При переключении на вторую схему обороты двигателя сильно снизятся. Для восстановления скорости вращения надо повысить силу тока.
Большой применяемостью оказывают пользу частотники для моторов мощностью до 8 кВт.
Применение инверторов нового поколения
Современные частотные преобразователи делаются с применением таких устройств как микроконтроллеры. Это значительно повышает функции инверторов в алгоритмах управления и контролирования с точки зрения безопасности работ.
Частотники имеют успешное применение в областях производства:
- в водоснабжении, снабжении теплом при изменении скорости подачи помпы холодного и горячего водоснабжения;
- в заводских условиях машиностроения;
- в легкой и текстильной промышленности;
- в энергетике и производстве топлива;
- для насосов канализации и скважин;
- в технологических процессах для автоматики управления.
Чтобы управлять и контролировать частотники изготовитель прибора предлагает созданную программу, которая будет всегда иметь связь с контроллером посредством порта, будет показывать на мониторе состояние и позволит производить управление. Данные документируются протоколом обмена и используются пользователями, создающими программы управления для электронной техники и контроллеров.
Данные обмениваются в три этапа:
- Идентификация.
- Инициализация.
- Управление и контроль.
Стоимость блоков питания бесперебойного напряжения имеет зависимость от того, есть ли в нем частотный преобразователь. За такими устройствами будущее. Отрасли экономики и энергетики будут быстрее развиваться благодаря новым современным устройствам.
Частотник для электродвигателя своими руками: схема, инструкция и подключение
В данной статье будет рассмотрен частотник для электродвигателя, принцип его работы и основные компоненты.
Основной упор будет сделан на теорию, чтобы вы поняли принцип работы частотного преобразователя и смогли в дальнейшем осуществить проектировку и изготовление своими руками.
Но для начала потребуется небольшой вводный курс, в котором будет рассказано о том, что такое частотник и для каких целей он необходим.
Функции частотного преобразователя
Львиную долю занимают в промышленности асинхронные двигатели.
И ими управлять всегда было трудно, так как они имеют постоянную частоту вращения ротора, а изменять входное напряжение оказывается очень сложно, а порой даже невозможно. Но частотник полностью изменяет картину.
И если раньше для изменения скорости движения транспортера, например, использовались разнообразные редукторы, то сегодня достаточно применить одно электронное устройство.
Кроме того, частотники позволяют получить не только возможность изменения параметров привода, но и несколько дополнительных степеней защиты. Отпадает необходимость в электромагнитных пускателях, а порой даже не нужно иметь трехфазную сеть для обеспечения нормальной работы асинхронного двигателя.
Все эти обязанности, связанные с коммутацией и включением электропривода, переходят к частотному преобразователю. Он позволяет изменять фазы на выходе, частоту тока (следовательно, и скорость вращения ротора меняется), проводить регулировку запуска и торможения, а также можно реализовать множество других функций.Все зависит от микроконтроллера, используемого в схеме управления.
Сделать частотник для электродвигателя своими руками, схема которого приведена в статье, достаточно просто. Он позволяет осуществить преобразование одной фазы в три.
Следовательно, появляется возможность использовать в быту асинхронный электродвигатель. При этом не потеряется его КПД и мощность. Ведь вы знаете, что при включении мотора в сеть с одной фазой происходит уменьшение этих параметров чуть ли не в два раза.
А все дело в нескольких преобразованиях поступающего на вход устройства напряжения.
Первым по схеме идет выпрямительный блок. Более подробно о нем будет рассказано ниже. После выпрямленное напряжение подвергается фильтрации. И поступает чистый постоянный ток на вход инвертора.
Он осуществляет преобразование постоянного тока в переменный с необходимым числом фаз. Вот этот каскад можно подвергнуть регулировкам. Он состоит из полупроводников, к которым подключена схема управления на микроконтроллере.
Но теперь обо всех узлах более подробно.
Выпрямительный блок
Он может быть двух типов – одно- и трехфазным. Первый вид выпрямителя можно использовать в любой сети. Если у вас трехфазная, то достаточно произвести подключение к одной. Схема частотника для электродвигателя не обходится без выпрямительного блока.
Так как имеется различие по числу фаз, значит, необходимо использовать определенное число полупроводниковых диодов. Если речь идет о частотных преобразователях, которые питаются от одной фазы, то требуется выпрямитель из четырех диодов.
Они включаются по мостовой схеме.
Она позволяет уменьшить разницу между значением напряжения на входе и выходе. Конечно, можно использовать и однополупериодную схему, но она неэффективна, возникает большое число колебаний.
Но если речь идет о трехфазном подключении, то необходимо в схеме использовать шесть полупроводников. Точно такая же схема в выпрямителе автомобильного генератора, никаких отличий нет.
Единственное, что можно сюда добавить, так это еще три дополнительных диода, предназначенные для защиты от обратного напряжения.
Фильтрующие элементы
После выпрямителя идет фильтр. Его основное предназначение – это отсечка всей переменной составляющей выпрямленного тока. Для более ясной картины нужно составить схему замещения. Итак, плюс проходит через катушку.
А затем между плюсом и минусом включен электролитический конденсатор. Вот он-то и интересен в схеме замещения.
Если катушка замещается реактивным сопротивлением, то конденсатор при наличии различного тока может быть либо проводником, либо разрывом.
Как было сказано, в выпрямителе на выходе постоянный ток. А при подаче его на электролитический конденсатор не происходит ничего, так как последний является разрывом цепи. Но вот есть небольшая переменная в токе.А если течет переменный ток, то в схеме замещения конденсатор становится проводником. Следовательно, происходит замыкание плюса на минус.
Данные выводы сделаны по законам Кирхгофа, которые являются основными в электротехнике.
Инвертор на силовых транзисторах
А вот теперь добрались до самого главного узла – каскада транзисторов. На них сделан инвертор – преобразователь постоянного тока в переменный.
Если изготавливается частотник для электродвигателя своими руками, то рекомендуется использовать сборки IGBT-транзисторов, найти их можно в любом магазине радиодеталей.
Причем стоимость всех компонентов для изготовления частотника окажется в десятки раз меньше, нежели цена готового изделия, даже китайского производства.
Для каждой фазы используется два транзистора. Они включены между плюсом и минусом, как изображено на схеме, приведенной в статье. Но есть у каждого транзистора особенность – управляющий вывод.
В зависимости от того, какой на него подан сигнал, изменяются свойства полупроводникового элемента.
Причем можно это произвести как при помощи ручного переключения (например, несколькими микровыключателями подавать напряжение на необходимые управляющие выводы), так и автоматического. Вот о последнем и пойдет речь дальше.
Схема управления
И если подключение частотного преобразователя к электродвигателю выполнить просто, достаточно только соединить соответствующие выводы, то со схемой управления все куда сложнее.
Все дело в том, что возникает необходимость в программировании устройства, чтобы добиться максимально возможных регулировок от него. В основе находится микроконтроллер, к нему производится подключение считывающих устройств и исполнительных.
Так, необходимо наличие трансформаторов тока, которые будут постоянно следить за мощностью, потребляемой электроприводом. И в случае превышения должно произойти отключение частотника.
Подключение схемы управления
Кроме того, предусматривается защита от перегрева. На выход микроконтроллера при помощи согласующего устройства (сборки Дарлингтона) производится подключение управляющих выводов IGBT-транзисторов.
Кроме того, необходимо визуально контролировать параметры, поэтому нужно включить в схему LED-дисплей.
Из считывающих устройств требуется добавить кнопки, которые позволят переключаться между режимами программирования, а также переменное сопротивление, вращением его изменяется скорость вращения ротора электродвигателя.
Заключение
Хочется отметить, что изготовить можно и самостоятельно частотник для электродвигателя, цена же готового изделия начинается от 5000 рублей. И это для электродвигателей, мощность которых не превышает 0,75 кВт.
Если нужно осуществить управление более мощным приводом, потребуется частотник подороже. Для использования в быту достаточно схемы, рассмотренной ниже.
Причина – нет необходимости в большом количестве функций и настроек, самое главное – это возможность изменения частоты вращения ротора.
Частотник для трехфазного и однофазного электродвигателя: частотный преобразователь своими руками, как сделать
Сегодня асинхронные двигатели являются основными тяговыми приводами для станков, конвейеров, и прочих промышленных агрегатов.
Для того чтобы моторы могли нормально функционировать, им нужен частотный преобразователь. Он позволяет оптимизировать работу агрегата и продлить срок его службы. Покупать устройство необязательно — частотник для трехфазного электродвигателя можно сделать своими руками.
Асинхронный электродвигатель может работать и без частотника, но в этом случае у него будет постоянная скорость без возможности регулировки. К тому же отсутствие частотного преобразователя приведет к возрастанию пускового тока в 5−7 раз от номинального, что вызовет увеличение ударных нагрузок, повысит потери электроэнергии и приведет к существенному сокращению срока службы агрегата.
Для нивелирования всех вышеперечисленных негативных факторов были изобретены преобразователи частоты для асинхронных двигателей трехфазного и однофазного тока.
Частотник дает возможность в широких пределах регулировать скорость электродвигателя, обеспечивает плавный пуск, позволяет регулировать как скорость запуска, так и скорость торможения, подключать трехфазный мотор к однофазной сети и многое другое. Все эти функции зависят от микроконтроллера, на котором он построен, и могут отличаться у разных моделей.
Принцип работы устройства
Переменный ток поступает из сети на диодный мост, где он выпрямляется и попадает на батарею сглаживающих конденсаторов, где окончательно превращается в постоянный ток, который поступает на стоки мощных IGBT транзисторов, управляемых главным контроллером. Истоки транзисторов, в свою очередь, подключены к двигателю.
Вот упрощенная схема преобразователя частоты для трехфазного асинхронного двигателя.
Теперь рассмотрим, что происходит с транзисторами и как они работают.
Полевой транзистор (он же ключ, мосфет и пр.) — это электронный выключатель, принцип его действия основан на возникновении проводимости между двумя выводами (сток и исток) мосфета, при появлении на управляющем выводе (затворе) напряжения, превышающего напряжение стока.
В отличие от обычных реле, ключи работают на очень высоких частотах (от нескольких герц до сотен килогерц) так что заменить их на реле не получится.С помощью этих быстродействующих переключателей микроконтроллер получает возможность управления силовыми цепями.
К контроллеру, кроме мосфетов, также подключены датчики тока, органы управления частотником, и другая периферия.
При работе частотного преобразователя микроконтроллер измеряет потребляемую мощность и, в соответствии с установленными на панели управления параметрами, изменяет длительность и частоту периодов, когда транзистор открыт (включен) или закрыт (выключен), тем самым изменяя или поддерживая скорость вращения электродвигателя.
Самостоятельное изготовление прибора
Несмотря на множество агрегатов заводского производства, люди делают преобразователи частоты самостоятельно, благо на сегодняшний день все его компоненты можно купить в любом радиомагазине или заказать из Китая. Такой частотник обойдется вам значительно дешевле покупного, к тому же вы не будете сомневаться в качестве его сборки и надежности.
Делаем трехфазный преобразователь
Собирать наш преобразователь будем на мосфетах G4PH50UD, которыми будет управлять контроллер PIC16F628A посредством оптодрайверов HCPL3120.
Собранный частотник при подключении в однофазную сеть 220 В будет иметь на выходе три полноценные фазы 220 В, со сдвигом 120°, и мощность 3 КВт.
Схема частотника выглядит так:
Так как частотный преобразователь состоит из частей, работающих как на высоком (силовая часть), так и на низком (управление) напряжении, то логично будет разбить его на три платы (основная плата, плата управления, и низковольтный блок питания для неё) для исключения возможности пробоя между дорожками с высоким и низким напряжением и выхода устройства из строя.
Вот так выглядит разводка платы управления:
Для питания платы управления можно использовать любой блок питания на 24 В, с пульсациями не более 1 В в размахе, с задержкой прекращения подачи питания на 2−3 секунды с момента исчезновения питающего напряжения 220 В.
Блок питания можно собрать и самим по этой схеме:
Обратите внимание, что номиналы и названия всех радиокомпонентов на схемах уже подписаны, так что собрать по ним работающее устройство может даже начинающий радиолюбитель.
Перед тем как приступить к сборке преобразователя, убедитесь:
- В наличии у вас всех необходимых компонентов;
- В правильности разводки платы;
- В наличии всех нужных отверстий для установки радиодеталей на плате;
- В том, что не забыли залить в микроконтроллер прошивку из этого архива:
Если вы все сделали правильно и ничего не забыли, можете приступать к сборке.
После сборки у вас получится что-то похожее:
Теперь вам осталось проверить устройство: для этого подключаем двигатель к частотнику и подаем на него напряжение. После того как загорится светодиод, сигнализирующий о готовности, нажмите на кнопку «Пуск». Двигатель должен начать медленно вращаться.
При удержании кнопки двигатель начинает разгоняться, при отпускании — поддерживает обороты на том уровне, до которого успел разогнаться. При нажатии кнопки «Сброс» двигатель останавливается с выбегом.
Кнопка «Реверс» задействуется только при остановленном двигателе.
Если проверка прошла успешно, то можете начинать изготавливать корпус и собирать в нем частотник. Не забудьте сделать в корпусе отверстия для притока холодного и оттока горячего воздуха от радиатора IGBT транзисторов.
Частотник для однофазного двигателя
Преобразователь частоты для однофазного двигателя отличается от трехфазного тем, что имеет на выходе две фазы (ошибки тут нет, двигатель однофазный, при подключении без частотника рабочая обмотка подключается в сеть напрямую, а пусковая — через конденсатор; но при использовании частотника пусковая обмотка подключается через вторую фазу) и одну нейтраль — в отличие от трех фаз у последнего, так что сделать частотник для однофазного электродвигателя, используя в качестве основы схему от трехфазного, не получится, поэтому придется начинать все сначала.
В качестве мозга этого преобразователя мы будем использовать МК ATmega328 с загрузчиком ардуины. В принципе, это и есть Arduino, только без своей обвязки. Так что, если у вас в закромах завалялась ардуинка с таким микроконтроллером, можете смело выпаивать его и использовать для дела, предварительно залив на него скетч (прошивку) из этого архива:
К атмеге будет подключен драйвер IR2132, а уже к нему — мосфеты IRG4BC30, к которым мы подключим двигатель мощностью до 1 КВт включительно.
Схема частотного преобразователя для однофазного двигателя:
Также для питания ардуины (5в) и для питания силового реле (12в), нам понадобятся 2 стабилизатора. Вот их схемы:Стабилизатор на 12 вольт.
Стабилизатор на 5 вольт.
Внимание! Эта схема не из простых. Возможно, придется настраивать и отлаживать прошивку для достижения полной работоспособности устройства, но это несложно, и мануалов по программированию Arduino в интернете — великое множество.
К тому же сам скетч содержит довольно подробные комментарии к каждому действию. Но если для вас это слишком сложно, то вы можете попробовать найти такой частотник в магазине.
Пусть они и не так распространены, как частотники для трехфазных двигателей, но купить их можно, пусть и не в каждом магазине.
Еще обратите внимание на то, что включать схему без балласта нельзя — сгорят выходные ключи. Балласт нужно подключать через диод, обращенный анодом к силовому фильтрующему конденсатору. Если подключите балласт без диода — опять выйдут из строя ключи.
Если вас все устраивает, можете приступать к изготовлению платы, а затем — к сборке всей схемы.
Перед сборкой убедитесь в правильности разводки платы и отсутствии дефектов в ней, а также — в наличии у вас всех указанных на схеме радиодеталей.
Также не забудьте установить IGBT-транзисторы на массивный радиатор и изолировать их от него путем использования термопрокладок и изолирующих шайб.
После сборки частотника можете приступать к его проверке.
В идеале у вас должен получиться такой функционал: кнопка «S1» — пуск, каждое последующее нажатие добавляет определенное (изменяется путем редактирования скетча) количество оборотов; «S2» — то же самое, что и «S1», только заставляет двигатель вращаться в противоположном направлении; кнопка «S3» — стоп, при её нажатии двигатель останавливается с выбегом.Обратите внимание, что реверс осуществляется через полную остановку двигателя, при попытке сменить направление вращения на работающем двигателе произойдет его мгновенная остановка, а силовые ключи сгорят от перегрузки. Если вам не жаль денег, которые придется потратить на замену мосфетов, то можете использовать эту особенность в качестве аварийного тормоза.
Возможные проблемы при проверке
Если при проверке частотника схема не заработала или заработала неправильно, значит, вы где-то допустили ошибку.
Отключите частотник от сети и проверьте правильность установки компонентов, их исправность и отсутствие разрывов/замыканий дорожек там, где их быть не должно.
После обнаружения неисправности устраните её и проверьте преобразователь снова. Если с этим все в порядке, приступайте к отладке прошивки.