Датчик переменного тока своими руками

Датчик переменного тока своими руками — Справочник металлиста

Датчик переменного тока своими руками

Хочу обратить Ваше внимание на то, что напряжение на выходе трансформатора тока будет двуполярным даже если в измеряемой цепи протекает пульсирующий однополярный ток. Трансформатор не может передавать постоянное напряжение. Он передаст на выходную обмотку только переменную составляющую измеряемого тока.

Еще одно замечание. Шунт вторичной обмотки должен пропускать электрический ток в обе стороны. Недопустимо ставить последовательно с выходной обмоткой диод.

Это может привести к скачкам напряжения на этой обмотке, насыщению трансформатора, помехам в измеряемой цепи, пробою диода.

Можно сначала поставить шунтирующий резистор, а уже потом снять с него напряжение через диод, или поставить мост с включенным в его диагональ шунтирующим резистором. Мост, как известно, обладает двусторонней проводимостью со стороны входов переменного напряжения.

Вашему вниманию подборки материалов:

К онструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

П рактика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

В некоторых случаях полезно измерять сумму токов через несколько проводников. Тогда все эти проводники пропускаются через окно сердечника. Сила тока во вторичной обмотке будет пропорциональна силе суммы токов. Важно направление протекания тока.

Если один провод пропущен так, что ток протекает в одном направлении, а второй так, что ток течет навстречу, то на выходе будет разность токов. Как я уже писал, трансформатор тока лучше работает при симметричном измеряемом токе. В некоторых случаях этого можно добиться, пропустив проводники в правильном направлении.

Например, в пуш-пульном преобразователе напряжения, для ограничения тока может применяться токовый трансформатор.

Можно пропустить проводники, соединенные с коллекторами (стоками) транзисторов так, чтобы ток проходил через трансформатор в одном направлении, но можно пропустить их крест-на-крест, а измеряемое напряжение подать на мост. Тогда трансформатор тока будет работать в более щадящем режиме.

Принцип работы токовых клещей

Токовые клещи представляют собой обычный токовый трансформатор, только разборный. Проводник, силу тока в котором мы измеряем, пропускается внутри сердечника. Далее клещи схлопываются, сердечник замыкается. В ручке токовых клещей размещена вторичная обмотка, намотанная на этом разборном сердечнике.

Такие токовые клещи позволяют измерять силу переменного тока. Для измерения постоянного тока применяется несколько другой принцип. Описание токовых клещей постоянного тока .

Применение трансформатора тока

Посмотрите пример применения токового трансформатора в различных радиоэлектронных устройствах:

  • Лабораторный импульсный блок питания. Зарядное устройство

Онлайн (on-line) расчет токового трансформатора

» Измерение » Токовые клещи постоянного тока — приставка к мультиметру своими руками. Описание

Токовые клещи постоянного тока — приставка к мультиметру своими руками. Описание

Для замера больших токов, как правило, применяют бесконтактный метод, — особыми токовыми клещам. Токовые клещи – измерительное устройство, имеющее раздвижное кольцо, которым охватывают электропровод и на индикаторе прибора отображается величина протекающего тока.

Превосходство подобного метода бесспорно, — чтобы замерить силу тока нет нужды разрывать провод, что в особенности немаловажно при измерении больших токов. В данной статье приводится описание токовые клещи постоянного тока. которые вполне возможно сделать своими руками.

Описание конструкции самодельных токовых клещей

Для сборки устройства понадобится чувствительный датчик Холла, к примеру, UGN3503. На рисунке 1 изображено устройство самодельной клещи. Необходим, как уже сказано, датчик Холла, а так же, кольцо ферритовое диаметром от 20 до 25 мм и крупный «крокодил», к примеру, подобный как на проводах для запуска (прикуривания) автомобиля.

Ферритовое кольцо необходимо точно и аккуратно распилить либо разломить на 2-е половинки. Для этого ферритовое кольцо необходимо сначала подпилить алмазным надфилем или пилкой для ампул. Далее, поверхности разлома ошкурить мелкой шкуркой.

С одной стороны на первую половинку ферритового кольца приклеить прокладку из чертежного ватман. С другой стороны на другую половинку кольца наклеить датчик Холла. Приклеивать лучше всего эпоксидным клеем, только нужно проследить, чтобы датчик Холла хорошо прилегал к зоне разлома кольца.

Следующий шаг – соединяем обе половинки кольца и обхватываем его «крокодилом» и приклеиваем. Теперь при нажатии на ручки «крокодила» ферритовое кольцо будет расходиться.

Электронная схема токовых клещей

Принципиальная электрическая схема приставки к мультиметру изображена на рисунке 2. При протекании тока по электропроводу, вокруг него появляется магнитное поле, и датчик Холла фиксирует силовые линии, проходящие через него, и формирует некоторое постоянное напряжение на выходе.

Данное напряжение усиливается (по мощности) ОУ А1 и идет на выводы мультиметра. Соотношение напряжения на выходе от протекающего тока: 1 Ампер = 1 мВольт. Подстроечные сопротивления R3 и R6 — многооборотные. Для настройки необходим лабораторный блок питания с минимальным током на выходе около 3А, и встроенным амперметром.

Сперва подсоедините данную приставку к мультиметру и выставьте её на нуль путем изменения сопротивления R3 и среднем положении R2. Далее, перед любым измерением необходимо будет выставлять ноль потенциометром R2.

Выставьте на блоке питания наименьшее напряжение и подсоедините к нему большую нагрузку, например, электролампу, применяемую в фарах автомобиля.

Затем на один из проводов, подсоединенный к данной лампе, зацепите «клещи» (рисунок 1).

Повышайте напряжение, до тех пор, пока амперметр блока питания не покажет 2 ампера.

Подкрутите сопротивление R6 так, чтобы величина напряжения мультиметра (в милливольтах) соответствовала данным амперметра блока питания в амперах.

Еще несколько раз проконтролируйте показания, меняя силу тока. Посредством этой приставки возможно мерить ток до 500А.

Что бы измерить большой ток используют бесконтактный способ, — специальными «токовыми клещами». Это электронный измерительный прибор, чем то похож на мультиметр, у которого сверху торчит своеобразная прищепка.

Эту прищепку цепляют на провод и на экране наблюдают показания тока в данном проводе. Короче говоря, измеряют ток потребителя — асинхронного электродвигателя, водонагревателя, электрочайника и т. д.

Преимущества такого способа очевидны, — чтобы измерить силу тока не нужно рвать цепь, что особенно важно при измерении больших токов.

«Токовые клещи» для обычного мультиметра можно сделать самостоятельно, если у вас есть чувствительный датчик Холла, например, UGN3503. На рисунке 1 показана конструкция самодельной «клещи».

Затем, поверхности слома обработать мелкой шкуркой. С одной стороны на одну из половинок кольца наклеить прокладку из толстой бумаги (чертежный ватман). С другой стороны на одну из половинок кольца наклеить датчик Холла. Клеить удобнее всего эпоксидным клеем, но так, чтобы датчик плотно прилегал к месту разлома кольца.

Затем, сложив обе половинки кольца как показано на рисунке 1 их нужно вставить в «пасть крокодила» и приклеить к «челюстям крокодила» тем же эпоксидным клеем.

В результате должна получиться конструкция, схематически показанная на рисунке 1. При нажиме на ручки «крокодила» ферритовое кольцо должно раскрываться вместе с его «челюстями».

Теперь о электронной части.

Принципиальная схема приставки к мультиметру показана на рисунке 2.

При прохождении тока по проводу вокруг него возникает магнитное поле, силовые линии которого пронизывают датчик Холла, и на его выходе появляется некоторое постоянное напряжение.

Это напряжение усиливается по мощности операционным усилителем А1 и поступает на вход мультиметра. Зависимость выходного напряжения от тока: 1А = 1 mV.

Подстроечные резисторы R3 и R6 должны быть многооборотными.

Для налаживания нужен лабораторный источник питания с выходным током не менее ЗА, со встроенным амперметром.

Сначала подключите приставку к мультиметру и откалибруйте её на нуль подстройкой R3 при среднем положении R2. Затем, перед каждым измерением нужно будет устанавливать ноль переменным резистором R2.

Установите на источнике минимальное напряжение и подключите к нему мощную нагрузку, например, лампу от автомобильной фары.

На один из проводов, идущей к этой лампе, нацепите «клещу» (как показано на рисунке 1). Увеличивайте напряжение пока амперметр источника не покажет 2-2,5А.

Подстройте R6 так, чтобы показание мультиметра в милливольтах были равны показанию амперметра источника в амперах.

Проверьте показания, изменяя силу тока в ту и другую сторону (уменьшая — увеличивая ток и сравнивая с амперметром источника).

При помощи данной приставки можно измерять ток до 500А. Например, можно измерить ток потребления автомобильным стартером в момент пуска двигателя.

Источники: http://gyrator.ru/current-transformer-on-line, http://fornk.ru/894-tokovye-kleshhi-pristaa-k-multimetru-svoimi-rukami/, http://www.radiopill.net/load/izmeritelnaja_tekhnika/pristaa_tokovye_kleshhi_k_cifrovomu_multimetru/pristaa_tokovye_kleshhi_k_cifrovomu_multimetru/356-1-0-474

Датчик тока на датчике холла своими руками по схемам

Схема датчика тока на основе датчика холла

При проведении измерений в автомобильной электрике часто приходится снимать осциллограммы величин тока. Другими словами, не просто измерять, а подробно изучать.

Датчик тока

Датчик переменного тока своими руками

Для того чтобы успешно автоматизировать различные технологические процессы, эффективно управлять приборами, устройствами, машинами и механизмами, нужно постоянно измерять и контролировать множество параметров и физических величин. Поэтому неотъемлемой частью автоматических систем стали датчики, обеспечивающие получение информации о состоянии контролируемых устройств.

По своей сути каждый датчик является составной частью регулирующих, сигнальных, измерительных и управляющих приборов.

С его помощью преобразуется та или иная контролируемая величина в определенный тип сигнала, позволяющий измерять, обрабатывать, регистрировать, передавать и хранить полученную информацию. В некоторых случаях датчик может оказывать воздействие на подконтрольные процессы.

Всеми этими качествами в полной мере обладает датчик тока, используемый во многих устройства и микросхемах. Он преобразует воздействие электрического тока в сигналы, удобные для дальнейшего использования.

Классификация датчиков

Датчики, применяемые в различных устройствах, классифицируются в соответствии с определенными признаками. По возможности измерений входных величин, они могут быть: электрическими, пневматическими, датчиками скорости, механических перемещений, давления, ускорения, усилия, температур и других параметров. Среди них измерение электрических и магнитных величин занимает примерно 4%.

Каждый датчик преобразует входную величину в какой-либо выходной параметр. В зависимости от этого, контрольные устройства могут быть неэлектрическими и электрическими.

Среди последних чаще всего встречаются:

  • Датчики постоянного тока
  • Датчики амплитуды переменного тока
  • Датчики сопротивления и другие аналогичные приборы.

Основным достоинством электрических датчиков является возможность передачи информации на определенные расстояния с высокой скоростью. Применение цифрового кода обеспечивает высокую точность, быстродействие и повышенную чувствительность измерительных приборов.

Принцип действия

По принципу работы все датчики разделяются на два основных вида. Они могут быть генераторными – непосредственно преобразующими входные величины в электрический сигнал.

К параметрическим датчикам относятся устройства, преобразующие входные величины в измененные электрические параметры самого датчика.

Кроме того, они могут быть реостатными, омическими, фотоэлектрическими или оптико-электронными, емкостными, индуктивными и т.д.

К работе всех датчиков предъявляются определенные требования. В каждом устройстве входная и выходная величина должны находиться в непосредственной зависимости между собой.

Все характеристики должны быть стабильными во времени. Как правило эти приборы отличаются высокой чувствительностью, небольшими размерами и массой.

Они могут работать в самых разных условиях и устанавливаться различными способами.

Современные датчики тока

Датчиками тока являются устройства, с помощью которых определяется сила постоянного или переменного тока в электрических цепях.

В их конструкцию входят магнитопровод с зазором и компенсационной обмоткой, датчик Холла, а также электронная плата, выполняющая обработку электрических сигналов.

Основным чувствительным элементом служит датчик Холла, закрепляемый в зазоре магнитопровода и соединяемый со входом усилителя.

Принцип действия в целом одинаковый для всех подобных устройств. Под действием измеряемого тока возникает магнитное поле, затем, с помощью датчика Холла осуществляется выработка соответствующего напряжения. Далее это напряжение усиливается на выходе и подается на выходную обмотку.

Основные виды датчиков тока:

Датчики прямого усиления (O/L). Обладают небольшими размерами и массой, низким энергопотреблением. Диапазон преобразований сигналов существенно расширен. Позволяет избежать потерь в первичной цепи.

Работа устройства базируется на магнитном поле, которое создает первичный ток Ip. Далее происходит концентрация магнитного поля в магнитной цепи и его дальнейшее преобразование элементом Холла в воздушном зазоре.

Сигнал, полученный с элемента Холла усиливается и на выходе образуется пропорциональная копия первичного тока.

Датчики тока (Eta). Характеризуются широким диапазоном частот и расширенным диапазоном преобразований. Преимуществами данных устройств является низкое энергопотребление и незначительное время задержки.

Работа устройства поддерживается однополярным питанием от 0 до +5 вольт. Действие прибора основано на комбинированной технологии, в которой используется компенсационный тип и прямое усиление.

Это способствует существенному улучшению характеристик датчика и более сбалансированному функционированию.

Датчики тока компенсационные (C/L). Отличаются широким диапазоном частот, высокой точностью и малым временем задержки. У приборов этого типа отсутствуют потери первичного сигнала, у них отличные характеристики линейности и низкий температурный дрейф.

Компенсация магнитного поля, создаваемого первичным током Ip, происходит за счет такого же поля, образующегося во вторичной обмотке. Генерация вторичного компенсирующего тока осуществляется элементом Холла и электроникой самого датчика.

В конечном итоге, вторичный ток представляет собой пропорциональную копию первичного тока.

Датчики тока компенсационные (тип С). Несомненными достоинствами этих приборов является широкий диапазон частот, высокая точность информации, отличная линейность и сниженный температурный дрейф. Кроме того, данные приборы могут измерять дифференциальные токи (CD).

Они обладают высокими уровнями изоляции и пониженным влиянием на первичный сигнал. Конструкция состоит из двух тороидальных магнитопроводов и двух вторичных обмоток. В основе работы датчиков лежит компенсация ампер-витков.

Ток с небольшим значением из первичной цепи проходит через первичный резистор и первичную обмотку.

Датчики тока PRIME. Для преобразования переменного тока используется широкий динамический диапазон. Прибор отличается хорошей линейностью, незначительными температурными потерями и отсутствием магнитного насыщения.

Преимуществом конструкции являются небольшие габариты и вес, высокая устойчивость к различным видам перегрузок. Точность показаний не зависит от того как в отверстии расположен кабель и не подвержена влиянию внешних полей.

В этом датчике используется не традиционная разомкнутая катушка, а измерительная головка с сенсорными печатными платами. Каждая плата состоит из двух раздельных катушек с воздушными сердечниками. Все они смонтированы на единую базовую печатную плату.

Из сенсорных плат формируются два концентрических контура, на выходах которых суммируется наведенное напряжение. В результате, получается информация о параметрах амплитуды и фазы измеряемого тока.

Датчики тока (тип IT). Характеризуются высокой точностью показаний, широким частотным диапазоном, низким шумом выходного сигнала, высокой стабильностью температуры и низким перекрестным искажением.

В конструкции этих датчиков отсутствуют элементы Холла. Первичный ток создает магнитное поле, которое в дальнейшем компенсируется вторичным током.

На выходе вторичный ток представляет собой пропорциональную копию первичного тока.

Преимущества датчиков тока в современных схемах

Микросхемы на основе датчиков тока играют большую роль в сохранении энергии. Этому способствует низкое питание и энергопотребление. В интегральных схемах происходит объединение всех необходимых электронных компонентов. Характеристики приборов значительно улучшаются, благодаря совместной работе сенсоров магнитного поля и всей остальной активной электроники.

Современные датчики тока способствуют дальнейшему уменьшению размеров, поскольку вся электроника интегрирована в единственный общий чип. Это привело к новым инновационным компактным дизайнерским решениям, в том числе касающимся и первичной шины. Каждый новый датчик тока обладает повышенной изоляцией и успешно взаимодействует с другими видами электронных компонентов.

Новейшие конструкции датчиков позволяют монтировать их в существующие установки без отключения первичного проводника. Они состоят из двух частей и являются разъемными, что позволяет легко устанавливать эти детали на первичный проводник без каких-либо отключений.

На каждый датчик имеется техническая документация, где отражается вся необходимая информация, позволяющая произвести предварительные расчеты и определить место наиболее оптимального использования.

Амперметр переменного тока своими руками

Датчик переменного тока своими руками

Подобрать токовый амперметр — дело непростое. Большинство приборов выпускается на Западе, в Китае или в странах СНГ, и в каждой стране к ним предъявляют свои индивидуальные требования.

Также в каждой стране свои допустимые величины постоянного и переменного тока, требования к розеткам.

В связи с этим при подключении амперметра западного производства к отечественному оборудованию может оказаться, что прибор не может правильно измерить силу тока, напряжение и сопротивление.

С одной стороны, такие устройства очень удобны. Они компактны, снабжаются зарядным устройством и просты в пользовании.

Классический стрелочный амперметр не занимает много места и имеет визуально понятный интерфейс, но он часто не рассчитан на существующее напряжение сопротивление. Как говорят бывалые электрики, на шкале «не хватает ампер».

Приборы, устроенные таким образом, обязательно нуждаются в шунтировании. Например, бывают ситуации, когда нужно измерить величину до 10а, а на шкале прибора отсутствует цифра 10.

Вот основные недостатки классического фабричного амперметра без шунта:

  • Большая погрешность в измерениях;
  • Диапазон измеряемых величин не соответствует современным электроприборам;
  • Крупная калибровка не позволяет измерять малые величины;
  • При попытке измерить большую величину сопротивления прибор «зашкаливает».

Для чего нужен шунт

Шунт необходим для того, чтобы правильно измерить сопротивление в тех случаях, если амперметр не предназначен для измерения таких величин.

Если домашний мастер часто имеет дело с такими величинами, есть смысл изготовить шунт для амперметра своими руками. Шунтирование значительно повышает точность и эффективность его работы. Это важное и нужное устройство для тех, кто часто пользуется тестером.

Обычно его используют владельцы классического амперметра 91с16. Вот основные преимущества самодельного шунта:

  • Позволяет измерить сопротивление там, где у фабричного или самодельного амперметра не хватает делений на шкале;
  • Помогает адаптировать зарубежные амперметры к российским электрическим цепям;
  • Точность тестера значительно увеличивается;
  • Защищает тестер от поломок и продлевает срок его службы. Любая ситуация, когда тестер «зашкаливает» является стрессом для прибора. Если амперметр «зашкаливает» часто (обычно так бывает, если он отсутствует), прибор быстро выходит из строя, а починить его непросто (легче купить новый).

Порядок изготовления

С самостоятельным изготовлением шунта легко справится даже первокурсник профессионально-технического училища или начинающий электрик-любитель.

Если подключить это устройство соответствующим образом, оно значительно увеличит точность амперметра и прослужит долго. В первую очередь необходимо произвести расчет шунта для амперметра постоянного тока.

Узнать о том, как производить расчеты, можно через интернет или из специализированной литературы, адресованной домашним электрикам. Рассчитать шунт можно с помощью калькулятора.

Для этого нужно просто подставить конкретные значения в готовую формулу.

Для того чтобы воспользоваться схемой расчета, необходимо знать реальные напряжение и сопротивление, на которые рассчитан конкретный тестер, а также представлять себе тот диапазон, до которого нужно расширить возможности тестера (это зависит от того, с какими именно приборами чаще всего приходится иметь дело домашнему электрику).

Для изготовления прекрасно подойдут такие материалы:

  • Стальная скрепка;
  • Моток медной проволоки;
  • Манганин;
  • Медный провод.

Можно приобрести материалы в специализированных магазинах или воспользоваться тем, что есть дома.

По сути, шунт — это источник дополнительного сопротивления, снабженный четырьмя зажимами и подсоединенный к прибору. Если для его изготовления используется стальная или медная проволока, не стоит скручивать его в виде спирали.

Лучше аккуратно уложить его в виде «волн». Если шунт рассчитан правильно, тестер будет работать намного лучше, чем раньше.

Металл для изготовления этого устройства должен хорошо проводить тепло. А вот индуктивность в том случае, если домашний электрик имеет дело с протеканием большого тока, может негативно повлиять на результат и способствовать его искажению. Это тоже нужно иметь в виду при изготовлении шунта в домашних условиях.

Полезные советы

Если домашний электрик решил приобрести амперметр промышленного производства, следует выбирать прибор с мелкой калибровкой, потому что он будет более точным. Тогда, возможно, не понадобится и самодельный шунт.

При работе с тестером следует соблюдать элементарную технику безопасности. Это поможет избежать серьезных травм, вызванных поражением электрическим током.

Если тестер систематически «зашкаливает», использовать его не стоит.

Возможно, что прибор или неисправен, или не способен показать правильный результат измерений без дополнительного приспособления. Лучше всего приобретать современные амперметры отечественного производства, потому что они лучше подходят для тестирования электроприборов нового поколения. Перед тем как начинать работу с тестером, следует внимательно прочитать инструкцию по эксплуатации.

Шунт — прекрасный способ оптимизировать работу домашнего электрика по тестированию электрических цепей. Для того чтобы сделать это устройство своими руками, понадобятся только исправный тестер промышленного производства, подручные материалы и элементарные познания в области электрики.

Датчики и микроконтроллеры. Часть 3. Измеряем ток и напряжение

Датчик тока на датчике холла своими руками по схемам

Датчик переменного тока своими руками
Схема датчика тока на основе датчика холла

При проведении измерений в автомобильной электрике часто приходится снимать осциллограммы величин тока. Другими словами, не просто измерять, а подробно изучать.

Классически для таких целей используются токовые трансформаторы или резисторы. Однако последние имеют частотные ограничения и влияют на изучаемую схему.

Токовой датчик, основанный на регуляторе Холла, призван решить эту проблему.

Все бы хорошо, но стоят такие датчики недешево. Если же суметь собрать такой вариант своими руками, то можно неплохо сэкономить. Чтобы суметь изготовить модель собственного производства, можно использовать несколько эффективных схем.

Схема на микросхеме 711

ACS 711 – тот самый чип, благодаря которому удастся изготовить токовый датчик или ТД на основе ДХ (датчика Холла). ЧД такого датчика будет равен почти 100 кГц, что будет вполне эффективно для проведения измерений.

Микросхема этого типа имеет выход, который интегрируется с усилителем. Последний, в свою очередь, за счет своей оперативности способен увеличивать возможности схемы вплоть до 1 А/В.

Что касается питания, то напряжение на усилитель поступает за счет применения внутреннего источника 2-полярного типа. Это может быть вариант NSD10 либо какой-нибудь другой. Сама микросхема питается уже посредством стабилизатора, имеющего выход с напряжением 3,3 В.

Проверенный «бюджетный» вариант

Вот, что надо предпринять для изготовления такого варианта:

  • в ферритовом кольце пропилить канавку по толщине корпуса;
  • на эпоксидный клей посадить МС;
  • сделать определенное количество витков на кольце (кол-во витков будет зависеть от конкретного напряжения);
  • в итоге получится бесконтактный вариант реле, функционирующий на электромагнитной основе.

Ферритовое кольцо в роли датчика

Точность срабатывания такого ДТ и регулярность достаточно высокая. Единственным недостатком схемы можно назвать кол-во витков, определяемых чисто эмпирически. На самом деле расчетов конкретного типа нигде и нет. Приходится определять число витков для конкретного сердечника.

Готовый ДТ MLX91206

Кумулятивная схема, где используется тончайший слой ферромагнитоструктуры или ИМС.

Последний выступает в качестве коммутатора магнитполя, обеспечивая тем самым, высокое усиление и наладку эквивалентности шумосигнала.

Более актуален этот вариант ДТ для измерения постоянно-переменного напряжения до 90 кгц с изоляцией омического свойства, что характеризуется незначительными внедряемыми потерями и малым временем отклика.

Схема включения датчика тока MLX91206

Кроме того, из преимуществ можно выделить простоту сборки и маленькие размеры фюзеляжа.

ДТ MLX91206 – это регулятор, который пока удовлетворяет спрос в автопромышленности. Помимо этого, ДТ этого типа применяется в других источниках питания: для защиты от перегрузки, в двигательных системах и т.д.

Чаще всего ДТ на микросхеме MLX91206 применяется в гибридных автомобильных системах, как автоинверторы.

Интересно и то, что датчик этот оснащен качественной защитной системой от перенапряжения, что позволяет использовать его в качестве отдельного регулятора, интегрированного к кабелю.

Принцип функционирования датчика подобного типа основан на преобразовании магнитполя, возникаемого от токов, проходящих сквозь проводник. Схема не имеет верхнего ограничения измеряемого уровня напряжения, так как выход и его параметры в данном случае зависят от проводникового размера и непосредственной дистанции от ДТ.

Что касается отличий этого типа ДТ от аналогичных:

  1. Скорость аналогового выхода, которая выше (этому способствует ЦАП 12 бит).
  2. Наличие программируемого переключателя.
  3. Надежная защита от переплюсовки и перенапряжения.
  4. Выход ШИМ с разрешением АЦП 12 бит.
  5. Большущая полоса пропускания, параметры которой равны 90 кГц и многое другое.

Одним словом, ДТ этого типа является компактным и эффективным датчиком, изготовленным по технологии Триасис Холл. Технология подобного типа считается классической и традиционной, она чувствительна к плотности потока, который приложен четко параллельно поверхности.

Уникальное решение для измерения больших величин тока

Измерения, которые удается провести с помощью готового датчика, изготовленного по технологии Триасис Холл, делятся на измерения небольшого напряжения до 2 А, тока средн. величины до 30 А и токов до 600 А (больших).

Рассмотрим подробнее возможности этих измерений.

  • Малые токи измеряются с помощью датчика за счет повышения параметров магнитполя через катушку вокруг ДТ. В данном случае чувствительность измерения будет обусловлена габаритами катушки и кол-вами витков.
  • Токи в диапазоне до 30 А или средние токи измеряются с учетом допустимости напряжения и общей рассеиваемости мощности дорожки. Последние обязаны быть довольно толстыми и широкими, иначе непрерывной обработки среднего тока достичь не удастся.
  • Наконец, измерение больших токов – это использование медных и толстых дорожек, способных приводить напряжение на обратной стороне печатной платы.

Дт на эффекте холла: общий взгляд

Что такое эффект Холла? Как известно, это явление основано на том, что если поместить в магнитное поле какой-либо полупроводник прямоугольного типа, и пропустить сквозь него напряжение, то на краях материала обязательно возникнет электрическая сила, направленная перпендикулярно магнитному полю.

Именно по этой причине магнитный датчик принято называть ДХ в честь ученого Холла, которому удалось первым раскрыть этот самый эффект.

Что дает этот самый эффект в автомобильной электрике? Все просто. Когда к ДХ подносится напряжение, то на краях пластины (она бывает расположена внутри ДХ) возникает разность потенциалов, и дается значение, пропорциональное СМП (силе магнитного поля).

Таким образом, в автомобильной сфере удалось использовать бесконтактные элементы, значительно лучше показавшие себя на практике, чем детали, оснащенные контактными группами. Последние приходилось регулярно чистить, ремонтировать, менять.

Бесконтактные ДХ успешно контролируют, например, скорость вращения валов, широко используются в системах зажигания, применимы в тахометрах и АБС.

Для измерений силы тока в различных электрических цепях с помощью микросхемы АС712 это удается сделать. Эффект Холла в данном случае оказывает неоспоримую помощь. Таким образом, удается изготавливать датчик или регулятор электрического тока на ДХ.

Подобные датчики позволят измерять силу не только постоянного, но и переменного тока, получать значения в млА.

Как измерить ток утечки с помощью датчика тока

Как правило, модуль с микросхемой АС712 функционирует строго от 5В, зато позволяет измерять максимальный уровень тока до 5 А. При этом напряжение должно быть выставлено в пределах значений от 2 квт.

Вообще, ДТ применяются повсеместно в электротехнике для создания коммуникаций обратной связи. В зависимости от конкретного места функционирования, ДТ классифицируются на несколько видов. Известны резистивные ДТ, токово-трансформаторные, ну и конечно, ДТ на эффекте Холла.

Нас интересуют ДТ на эффекте Холла. Они еще называются открытыми регуляторами или приборами с выходным сигналом по напряжению. Предназначение их: бесконтактным способом измерять переменный, постоянный и импульсный ток в диапазонах от плюс/минус 57 до плюс/минус 950 Ампер при в.о. 3 млс.

Датчик тока в схеме электромобиля

Выходное напряжение ДТ бывает четко соизмерно вычисляемым параметрам тока. 0-е значение напряжения равняется половинной величине тока питания. Тем самым, диапазон выхода тока составляет 0,25-0,75 В.

Настройку чувствительности ДТ легко провести методом трансформации числа витков тестируемого проводника по кругу магнитопровода регулятора.

Корпус ДТ обязан быть устроен из прочного РВТ пластика.

РВТ пластик – это пластиковый материал, получаемый посредством однородного сваривания.

Что касается жестких выводов корпуса ДТ, то их бывает 3. Предназначены они для пайки на плату.

Цепь выхода ДТ – пара комплектарно-биополярных транзисторов. Другими словами, это не что иное, как полупроводниковый прибор, в котором сформировано два перехода, а перенос заряда осуществляется носителями 2-х полярностей или иначе – электронами и квазичастицами.

ДТ на эффекте Холла бывают также оригинального и неоригинального производства. Первые выделяются привлекательным дизайном, надежны и способны давать высочайшую точность показаний. А вот ДТ неоригинального производства таких параметров не имеют, хотя тоже способны предоставить свои преимущества. К ним относится разборный корпус и низкая стоимость.

Внимание. Если ДТ легко разбирается путем вывинчивания 4-х винтиков, то перед вами не оригинальный прибор.

Разборка корпуса оригинального ДТ обязательно приведет к неудаче, так как они изготовлены в закрытом варианте. Конечно, можно постараться и добраться до внутренностей, однако это обязательно приводит к поломкам. Корпус таких приборов запаян со всех сторон, по всем стыкам.

Для сравнения внутренностей заводского ДТ и последующего собирания самодельной схемы рекомендуется воспользоваться, как и было написано выше, неоригинальным устройством. Например, пусть это будет китайский ДСТ-500. Он легко разбирается, схема срисовывается на ура, так как она простая, не содержит сложных заковырок.

Что касается функционирования, то она одинакова во всех типах ДТ:

  • силовой проводник под напряжением идет через магнитопровод;
  • образуется циклотронное поле;
  • ток идет по выравнивающей обмотке магнитопровода, чтобы стабилизировать поле;
  • компенсируемое напряжение должно быть ровно пропорционально напряжению в сил. проводнике.

Помимо этого, для компенсирования магнитпровода датчика, требуется измерять величинные и знаковые значения ДТ. Для этих целей в магнитопроводе следует прорезать отверстие, через которое, собственно говоря, и вставляется датчик Холла. Сигнал прибора будет форсироваться, снабжать мощностный эндотрон, выход которого интегрирован со стабилизирующей обмоткой.

Данным образом, основной целью подобной схемы станет пропуск такой доли напряжения сквозь обмотку, которая бы воздействовала на магнитное поле так, чтобы в разрыве магнитопровода значение приближалось к 0.

В целой зоне измеряемого напряжения при этом сохранится ювелирная точность КПД соизмеримости. Для измерения точного напряжения компенс. обмотки используется низкоомный резистор-прецизион. Величина падения тока на таком резисторе будет равна значению напряжения в силовой цепи.

ДТ подобного типа можно легко изготовить своими силами. Потребность в таких регуляторах постоянно растет, стоят они, как и говорилось, недешево.

Датчик Холла в конкретном случае желательно использовать специфический, бескорпусный. Установить его можно на узкую полоску тонкого фольго-стеклотекстолита. Под ним должно быть предусмотрено посадочное углубление, где он будет посажен на эпоксидный клей очень плотно.

Внимание. Толщина полоски текстолита в 0,8 мм будет считаться нормальной, так как зайдет в зазор без излишнего трения о стенки и без эффекта болтания.

ДТ — эталонная установка для вычисления напряжения высоковольтажного пульсара питания. Например, ток, потребляемый стартером или генератором. И с помощью датчика Холла осуществить это удается, используя всего лишь одну микросхему.

Напоследок интересное видео про датчик тока на основе датчика холла

Устал платить за штрафы? Выход есть!

Забудьте о штрафах с камер! Абсолютно легальная новинка — Глушилка камер ГИБДД, скрывает ваши номера от камер, которые стоят по всем городам. Подробнее по ссылке.

  • Абсолютно легально (статья 12.2);
  • Скрывает от фото-видеофиксации;
  • Подходит для всех автомобилей;
  • Работает через разъем прикуривателя;
  • Не вызывает помех в радиоприемнике и сотовых телефонах.

Токовые клещи своими руками — советы электрика — Electro Genius

Датчик переменного тока своими руками

Для замера больших токов, как правило, применяют бесконтактный метод, — особыми токовыми клещам. Токовые клещи – измерительное устройство, имеющее раздвижное кольцо, которым охватывают электропровод и на индикаторе прибора отображается величина протекающего тока.

Превосходство подобного метода бесспорно, — чтобы замерить силу тока нет нужды разрывать провод, что в особенности немаловажно при измерении больших токов. В данной статье приводится описание токовые клещи постоянного тока, которые вполне возможно сделать своими руками.

ElektroMaster.org Ремонт и обслуживание бытовых электроприборов своими рукамиСоветы, руководства.

Яндекс.Директ

Амперметр — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора.

В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют; для увеличения предела измерений — с шунтом или через трансформатор.

(Примером амперметра с трансформатором являются «токовые клещи»

Амперметр

Токовые клещи — Амперметр для бесконтактного измерения больших токов, позволяет измерять силу тока бесконтактным способом с высокой точностью, не прерывая подачу электроэнергии потребителям.

При измерении силы тока щупы клещей, в которых вмонтированы ферритовые сердечники, как бы обхватывают проводник, оставаясь полностью изолированными от открытых участков проводов.

За счет образования ферритами колебательного контура при протекании тока по проводнику возникает магнитная индукция, значение которой прямопропорционально силе тока, протекающей по проводнику.

Это значение регистрируется токовыми датчиками токоизмерительных клещей  и преобразуется в значение силы тока, которое либо высвечивается на дисплее токовых клещей (если он конструктивно предусмотрен), либо выдает значение на внешний мультиметр через выносные щупы. В зависимости от модификации, токовые клещи  могут производить измерения силы как постоянного тока, так и переменного.

Токовые клещи

Общая характеристика

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.
Принцип действия

Электродинамические амперметры состоят из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействия между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки. В электрическом контуре амперметр соединяется последовательно с нагрузкой, а при высоком напряжении или больших токах — через трансформатор.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.