Изготовление термопары своими руками
Как сделать термопару
Большинство предметов для обогрева и измерения, которые мы применяем в быту, требуют использования особых элементов контроля. Такие контроллеры (термопары) предохраняют приборы от перегрева и поломок.
Термопару можно использовать и для небольших домашних измерений, и для лабораторных опытов. Для этого не нужно специально искать ее в магазинах.
Можно разобраться в ее устройстве и сделать термопару для мультиметра своими руками.
Принцип работы
Термопара — это самый популярный термодатчик, который был открыт в 1822 году немецким физиком Томасом Зеебеком. Именно поэтому принцип работы такого элемента часто называют эффектом Зеебека.
В книгах и учебниках этот эффект описывают так: если спаи проводников имеют неидентичные температуры, то между ними образовывается электрическая сила (термоэдс), значение которой пропорционально разности температур спаев.
Здесь нужно подчеркнуть, что принимать во внимание стоит именно разность температур, а не какой-либо показатель вообще. Кроме того, если оба спая имеют равнозначную температуру, то термоэдс в цепи не возникнет.
Перед тем как приступить к изготовлению термодатчика, нужно подготовить все материалы и инструменты. Электроды термопары состоят из разнородных материалов, для выбора которых нужно определиться с типом изделия и сферой использования.
Типы термодатчиков обозначаются буквами латинского алфавита и имеют свои характеристики. Например, популярная модель TYPE K состоит из сплава хромель-алюмель, а диапазон ее измерений — 200−1200 °C.Произведя несложные расчеты, можно говорить о нелинейности (термоэдс -35 — 32 мкВ/°C), в то время как нелинейность характеристики должна быть наименьшей.
В этом случае погрешность при измерениях будет совсем небольшой.
Термопара может располагаться на удаленном расстоянии от самого оборудования. Для этого ее подключают с помощью специального кабеля. Сам кабель делают из тех же материалов, что и термопару. Разница только в диаметре.
: Как связать шарф-бусы
Создать аккаунт
Зарегистрируйтесь для получения аккаунта. Это просто!
Зарегистрировать аккаунт
Типы термопар и их характеристики
Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:
- ТПП13 – платинородий-платиновые (тип R);
- ТПП10 – платинородий-платиновые (тип S);
- ТПР – платинородий-платинродиевые (тип B);
- ТЖК – железо-константановые (тип J);
- ТМКн – медь-константановые (тип T);
- ТНН – нихросил-нисиловые (тип N);
- ТХА – хромель-алюмелевые (тип K);
- ТХКн – хромель-константановые (тип E);
- ТХК – хромель-копелевые (тип L);
- ТМК – медь-копелевые (тип M);
- ТСС – сильх-силиновые (тип I);
- ТВР – вольфрамрениевые (типы A-1 – A-3).
Технические требования к термопарам задаются параметрами определёнными ГОСТ 6616-94, а их НСХ (номинальные статические характеристики преобразования), оптимальные диапазоны измерений, установленные классы допуска регулируются стандартами МЭК 62460, и определены .
Заметим, также, что НСХ в вольфрам-рениевых термопарах отсутствовали в таблицах МЭК до 2008 г. На сегодняшний день указанными стандартами не определены характеристики термопары хромель-копель, но их параметры по прежнему регулируются ГОСТ Р 8.585-2001.
Поэтому импортные термопары типа L не являются полным аналогом отечественного изделия ТХК.
Классификацию термодатчиков можно провести и по другим признакам: по типу спаев, количеству чувствительных элементов.
В зависимости от назначения термодатчика спаи термопар могут иметь различную конфигурацию. Существуют одноэлементные и двухэлементные спаи. Они могут быть как заземлёнными на корпус колбы, так и незаземленными. Понять схемы таких конструкций можно из рисунка 5.
Рис. 5. Типы спаев
Буквами обозначено:
- И – один спай, изолированный от корпуса;
- Н – один соединённый с корпусом спай;
- ИИ – два изолированных друг от друга и от корпуса спая;
- 2И – сдвоенный спай, изолированный от корпуса;
- ИН – два спая, один из которых заземлён;
- НН – два неизолированных спая, соединённых с корпусом.
Заземление на корпус снижает инерционность термопары, что, в свою очередь, повышает быстродействие датчика и увеличивает точность измерений в режиме реального времени.
С целью уменьшения инерционности в некоторых моделях термоэлектрических преобразователей оставляют горячий спай снаружи защитной колбы.
Многоточечные термопары
Часто требуется измерение температуры в различных точках одновременно. Многоточечные термопары решают эту проблему: они фиксируют данные о температуре вдоль оси преобразователя.
Такая необходимость возникает в химических и нефтехимических отраслях, где требуется получать информацию о распределении температуры в реакторах, колоннах фракционирования и в других ёмкостях, предназначенных для переработки жидкостей химическим способом.
Многоточечные измерительные преобразователи температуры повышают экономичность, не требуют сложного обслуживания. Количество точек сбора данных может достигать до 60. При этом используется только одна колба и одна точка ввода в установку.
Изготовление термодатчика
Для изготовления термопары своими руками необходимо приобрести проволоку из подходящих материалов. Здесь важное значение имеет диаметр, так как от него зависит погрешность при измерении температуры. Рекомендуется брать проволоку меньшего диаметра, особенно если исследоваться будут объекты небольших размеров.
Материал зависит от диапазона температур, с которым предполагается работа. Наиболее распространенные варианты: хромель-алюмель, медь-константан. Само изготовление заключается в создании соединения, сплава двух проволок. Зачастую для этого используется какой-то источник напряжения (к примеру, автомобильный аккумулятор или трансформатор).
Дальнейшие этапы работы таковы:
- свободные концы скрученной проволоки подключают к одному из полюсов источника напряжения;
- вывод подсоединяется к другому из полюсов, который дополнительно соединен еще и с графитным карандашом.
При возникновении электрической дуги возникает соединение проволок термопары. При этом напряжение для соединения проводов подбирается путем эксперимента. Как правило, оптимальное значение 40−50 В, но оно может быть меньше, так как зависит от материалов и длины изделия.
Еще один главный момент — соблюдение техники безопасности. Очень важно не использовать слишком высокое напряжение и не касаться оголенных проводов. Лучше заизолировать их специальной лентой или закрыть керамической трубкой.
Это самый простой и доступный способ изготовления термопары для мультиметра своими руками. Иногда проволоки для термопар спаивают с помощью паяльника. Но тогда придется дополнительно приобрести специальный припой и придерживаться определенных температур в работе.
Таблица сравнения термопар
Выше мы рассмотрели типы термоэлектрических преобразователей. У читателя, скорее всего, резонно возник вопрос: Почему так много типов термопар существует?
Дело в том, что заявленная производителем точность измерений возможна только в определённом интервале температур. Именно в этом диапазоне производитель гарантирует линейную характеристику своего изделия.
В других диапазонах зависимость напряжения от температуры может быть нелинейной, а это обязательно отобразится на точности.
Следует учитывать, что материалы обладают разной степенью плавкости, поэтому для них существует предельное значение рабочих температур.Для сравнения термопар составлены таблицы, в которых отображены основные параметры измерительных преобразователей. В качестве примера приводим один из вариантов таблицы для сравнения распространённых термопар.
Таблица 1.
Тип термопары | K | J | N | R | S | B | T | E |
Материал положительного электрода | Cr-Ni | Fe | Ni-Cr-Si | Pt-Rh (13 % Rh) | Pt-Rh (10 % Rh) | Pt-Rh (30 % Rh) | Cu | Cr-Ni |
Материал отрицательного электрода | Ni-Al | Cu-Ni | Ni-Si-Mg | Pt | Pt | Pt-Rh (6 % Rh | Cu-Ni | Cu-Ni |
Температурный коэффициент | 40…41 | 55.2 | 68 | |||||
Рабочий температурный диапазон, ºC | 0 до +1100 | 0 до +700 | 0 до +1100 | 0 до +1600 | 0 до 1600 | +200 до +1700 | −185 до +300 | 0 до +800 |
Значения предельных температур, ºС | −180; +1300 | −180; +800 | −270; +1300 | – 50; +1600 | −50; +1750 | 0; +1820 | −250; +400 | −40; +900 |
Класс точности 1, в соответствующем диапазоне температур, (°C) | ±1,5 от −40 °C до 375 °C | ±1,5 от −40 °C до 375 °C | ±1,5 от −40 °C до 375 °C | ±1,0 от 0 °C до 1100 °C | ±1,0 от 0 °C до 1100 °C | ±0,5 от −40 °C до 125 °C | ±1,5 от −40 °C до 375 °C | |
±0,004×T от 375 °C до 750 °C | ±0,004×T от 375 °C до 1000 °C | ± от 1100 °C до 1600 °C | ± от 1100 °C до 1600 ° | ±0,004×T от 125 °C до 350 °C | ±0,004×T от 375 °C до 800 °C | |||
Класс точности 2 в соответствующем диапазоне температур, (°C) | ±2,5 от −40 °C до 333 °C | ±2,5 от −40 °C до 333 °C | ±2,5 от −40 °C до 333 °C | ±1,5 от 0 °C до 600 °C | ±1,5 от 0 °C до 600 °C | ±0,0025×T от 600 °C до 1700 °C | ±1,0 от −40 °C до 133 °C | ±2,5 от −40 °C до 333 °C |
±0, T от 333 °C до 750 °C | ±0,0075×T от 333 °C до 1200 °C | ±0,0025×T от 600 °C до 1600 °C | ±0,0075×T от 133 °C до 350 °C | ±0,0075×T от 333 °C до 900 °C | ||||
Цветовая маркировка выводов по МЭК | Зелёный – белый | Чёрный – белый | Сиреневый – белый | Оранжевый – белый | Оранжевый – белый | Отсутствует | Коричневый – белый | Фиолетовый – белый |
: Как плести из прутьев: познавайте с нами
Способы подключения
Каждая новая точка соединения проводов из разнородных металлов образует холодный спай, что может повлиять на точность показаний. Поэтому подключения термопары выполняют, по возможности, проводами из того же материала, что и электроды. Обычно производители поставляют изделия с подсоединёнными компенсационными проводами.
Некоторые измерительные приборы содержат схемы корректировки показаний на основе встроенного термистора. К таким приборам просто подключаются провода, соблюдая их полярность (см. рис. 6).
Рис. 6. Компенсационные провода
Часто используют схему подключения «на разрыв». Измерительный прибор, подключают через проводник того же типа что и клеммы (чаще всего медь). Таким образом, в местах соединения отсутствует холодный спай. Он образуется лишь в одном месте: в точке присоединения провода к электроду термопары. На рисунке 7 показана схема такого подключения.
Рис. 7. Схема подключения на разрыв
При подключении термопары следует как можно ближе размещать измерительные системы, чтобы избежать использования слишком длинных проводов. Во всяком проводе возможны помехи, которые усиливаются с увеличением длины проволоки. Если от радиопомех можно избавиться путём экранирования проводки, то бороться с токами наводки гораздо сложнее.
В некоторых схемах используют компенсирующий терморезистор между контактом измерительного прибора и точкой холодного спая. Поскольку внешняя температура одинаково влияет на резистор и на свободный спай, то данный элемент будет корректировать такие воздействия.
И напоследок: подключив термопару к измерительному прибору, необходимо, пользуясь градуировочными таблицами, выполнить процедуру калибровки.
Применение
Термопары используются везде, где требуется измерение температуры в технологической среде. Они применяются в автоматизированных системах управления в качестве . Термопары типа ТВР, у которых внушительный диаметр термоэлектрода, незаменимы там, где требуется получать данные о слишком высокой температуре, в частности в металлургии.
Газовые котлы, конвекторы, водонагревательные колонки также оборудованы термоэлектрическими преобразователями.
Преимущества
- высокая точность измерений;
- достаточно широкий температурный диапазон;
- высокая надёжность;
- простота в обслуживании;
- дешевизна.
Недостатки
Недостатками изделий являются факторы:
- влияние свободных спаев на показатели приборов;
- ограничение пределов рабочего диапазона нелинейной зависимостью ТЭДС от степени нагревания, порождающей сложности в разработке вторичных преобразователей сигналов;
- при длительной эксплуатации в условиях перепадов температур ухудшаются градуировочные характеристики;
- необходимость в индивидуальной градуировке для получения высокой точности измерений, в пределах погрешности в 0,01 ºC.
Благодаря тому, что проблемы связанные с недостатками решаемы, применение термопар более чем оправдано.
Поделитесь в соц.сетях: |
Термопара для мультиметра: характеристики и принцип работы, выбор материалов и изготовление своими руками
Большинство предметов для обогрева и измерения, которые мы применяем в быту, требуют использования особых элементов контроля. Такие контроллеры (термопары) предохраняют приборы от перегрева и поломок.
Термопару можно использовать и для небольших домашних измерений, и для лабораторных опытов. Для этого не нужно специально искать ее в магазинах.
Можно разобраться в ее устройстве и сделать термопару для мультиметра своими руками.
- Описание и характеристики
- Принцип работы
- Изготовление термодатчика
Термопара — это прибор, состоящий из двух различных проводников, которые соединяются в одной или нескольких точках компенсационными проводами.
Когда на одном конце провода происходит измерение температуры, на другом создается напряжение определенного значения и силы.
Это устройство используется для контроля температуры, а также для преобразования температуры в электрический ток.
[attention type=yellow]
Стоит термодатчик совсем недорого. Этот прибор вполне стандартный и измеряет большой диапазон температур. Единственным минусом в работе элемента является неточность, которая может составлять до 1 °C, а это немало для таких значений.
[/attention]
Сделать термопару в домашних условиях не составит труда. Необходимо только помнить, что эти устройства создаются из специальных сплавов, поэтому прослеживается предсказуемая и стойкая зависимость между напряжением и температурой.
Датчики бывают разных типов. Они классифицируются по типу используемых металлов для сплава:
- хромель — алюмелевые;
- платинородий — платиновые.
От состава зависит и среда применения, ведь такие контроллеры используют как в науке и промышленности, так и в домашних условиях — для котлов, колонок, духовых шкафов.
Изготовление термопары своими руками
Практически все отопительные приборы в нашем доме нуждаются в использовании специальных контроллеров, которые предохранят их от перегрева. Предлагаем рассмотреть, что это такое – термопары, их принцип работы простым языком, виды приспособлений, а также основные характеристики подключения.
Общие понятия и конструкция
Термопара ГОСТ Р 8.585-2001 представляет собой устройство для измерения температуры, которое состоит из двух разнородных проводников, контактирующих друг с другом в нескольких или одной точке, которые иногда соединяют компенсационные провода.
В тот момент, когда на одном из таких участков изменяется температура, создается определенное напряжение.
Термопары часто используются для контроля температур разнообразных сред, а также для конвертации температуры в энергию, в частности, в электрический ток.
Виды термопар
Коммерческий преобразователь стоит доступно, является полностью взаимозаменяемым, оснащен стандартными разъемами и может измерять широкий диапазон температур.
В отличие от большинства других методов измерения градусов, термопары с автономным питанием не требуют внешнего способа возбуждения.
Основным ограничением при работе термопар является точность; вполне возможны ошибки вплоть до одного градуса по Цельсию, что достаточно много для стандартного измерителя или контроллера.
Фото – Вид термопары
Основные параметры прибора зависят от материала. Любой узел из разнородных металлов будет производить электрический потенциал, относящийся к определенной температуре и образующий сопротивление.
Термопары для практического измерения температуры созданы из конкретных сплавов, имеющих предсказуемую и повторяемую зависимость между температурой и напряжением.Различные сплавы используются для различных температурных диапазонов, если Вы хотите купить термопару, то предварительно обязательно проконсультируйтесь с продавцом-консультантом выбранной компании.
Существуют разные типы термопары, очень важно обращать внимание также на стойкость к коррозии. Если точка измерения находится далеко от измерительного прибора, промежуточное соединение может быть выполнено путем расширения проводов, которые являются менее дорогостоящими, чем материалы, используемые, чтобы сделать датчик.
Приспособления обычно стандартизованы по отношению к эталонной температуре 0 градусов по Цельсию; производственные компании часто используют электронные методы компенсации холодного спая для корректировки изменения температуры на клеммах прибора.
Электронные приборы могут также компенсировать прочие различные характеристики термопары, тем самым улучшить точность и достоверность измерений.
Фото – Термопара для котла
Применение термопары достаточно широкое: их используют в науке и промышленности; приспособлениями можно осуществлять измерение температуры для печей, газовой колонки, спая, газовых турбин выхлопных газов, дизельных двигателей и других промышленных процессов. Данные устройства термосопротивления также используются в частных домах, офисах и предприятий. Также они могут заменить термостаты в АОГВ и прочих газовых отопительных приборах.
Принцип действия термопары
Согласно правилу Зеебека, если проводник подвергается воздействию, его сопротивление и напряжение изменяется – это называется термоэлектрический эффект или эффект Зеебека. Любая попытка измерить это напряжение обязательно включает подключение другого проводника к «горячему» концу термопары.
Этот дополнительный гибкий провод, потом также может стать градиентом температуры, а также разработать собственное напряжение, которое будет противостоять текущему. Величина этой разности напрямую зависит от металла, который используется при работе.
Использование разнородных сплавов для замыкания цепи создает новую цепь, в которой два конца могут генерировать различные напряжения, в результате чего образуется небольшое различие в напряжении, доступные для измерения.
Это различие увеличивается с ростом температуры и составляет от 1 до 70 микровольт на градус Цельсия (мкВ / ° C) для стандартных сочетаний металлов.
Фото – Принцип работы термопары
Напряжение не генерируется на стыке двух металлов термопары, а вдоль этой части длины двух разнородных металлов, подверженного градиента температуры.Поскольку обе длины разнородных металлов испытывают один и тот же температурный градиент, конечный результат является результатом измерения разности температур между термопарой и спаем.
Пока контакт находится в постоянной температуре, это не имеет значения, каким образом узел изготовлен (это может быть пайка, точечная сварка, обжим и т.д.), однако это имеет решающее значение для точности.
Если соединение выполнено недостаточно качественно, то получится более серьезная погрешность, чем градус. Особенно в высокой точности нуждается мультиметр с термопарой, разнообразные производственные датчики, контроллеры высоких температур для газовой печи и т.д.
Фото – Термопара арбат
: Измерение температуры с помощью термопары
Типы термопары
В определенных условиях, легко создается термопара своими руками, но необходимо знать, какие бывают виды данных устройств, в частности, чем отличаются модели ТХА, ТХК, ТПП, ТВР, ТЖК, ТПР, ТСП. Они распределятся как:
Сплав хромель – константан. Данное соединение имеет высокую производительность (68 мкВ / ° C), что делает его подходящим для криогенного использования. Кроме того, он является немагнитным. Диапазон температур составляет от -50 ° С до +740 ° С.
Это железо – константан. Здесь область работы немного уже от -40 ° C до +750 ° C, но выше чувствительность – около 50 мкВ / ° С.
Фото – термопары хромель-алюмель
Щупы для мультиметра
Электронные тестеры-мультиметры применяются, как на производстве, так и в быту. Приборы отличаются удобством работы и надежностью. Но иногда показания тестеров начинают «плавать», прибор «сбоит» в работе.
Часто неисправность мультиметра кроется в плохих щупах, в которых нарушаются контакты, трескается изоляция провода. Бюджетные варианты мультиметров имеют простейшие электрические щупы. Ремонт тестера в этом случае прост.
Требуется поменять имеющиеся щупы на новые, хорошего качества, с надежными проводами и разъемами.
Универсальные щупы
Чаще всего в комплекте с мультиметром идут универсальные щупы. Ими можно касаться контактных точек электрических схем, плат, приборов. Контакты таких щупов сделаны в виде заточенных игл. Такие щупы имеют самое широкое применение при использовании мультиметра.
Как всякие универсальные устройства, они имеют недостатки:
- Относительно высокие сопротивления проводников;
- Невозможность закрепления на необходимых контактных точках устройств и схем;
- Не всегда возможно подключиться к компонентам микромонтажа;
- Слабая термоустойчивость материала изоляции проводов при случайном касании жала паяльника.
Такие комплекты щупов мультиметров, при всех своих недостатках, недороги, поэтому популярны. Они вполне подходят для проведения простых работ, измерения напряжения, тока, «прозвонки» цепей, в местах, где имеется легкий доступ к электрическим или электронным компонентам и системам.
Фирменные изделия
Высококачественные наборы щупов имеют в комплекте различные насадки, позволяющие произвести более точные измерения в сложных, труднодоступных местах электронных плат, приборов, схем с микромонтажем.
Высококачественные наборы для щупов
В таких наборах могут быть:
- Переходники – клеммы для стационарного присоединения проводов, например, к блокам питания;
- Тонкие игольчатые насадки для доступа к малоразмерным контактным площадкам печатных плат;
- Зажимы «крокодил», подключаемые к клеммам или контактным штырькам приборов;
- Специальные насадки зажимы для присоединения к элементам поверхностного монтажа – электронным компонентам SMD;
- Пружинные зажимы для установки на ножки микросхем или навесных элементов монтажных плат.
Такие наборы расширяют спектр использования мультиметров, улучшают условия работы измерителя. При этом комплекты имеют серьезный недостаток – высокую цену, которая иногда доходит до нескольких тысяч рублей, что сопоставимо с ценой самого мультиметра.
Щупы для SMD-монтажа
Светодиод, способы определения его полярности
Предназначены для подключения к элементам поверхностного микромонтажа – SMD компонентам, которые не имеют проволочных выводов и крепятся к печатной плате припоем за торцы-контакты. Применяются в виде специальных насадок – зажимов, одеваемых на стандартные щупы.
Печатная плата с SMD элементами
Такие приспособления надежно прикрепляются к торцевым контактам SMD компонентов.
Щуп пинцет для SMD компонентов
При необходимости с помощью таких насадок на щупы можно точно измерить напряжение на SMD элементе. Если это резистор, то, зная его номинал, легко рассчитать ток в цепи.
Наконечники-«крокодилы»
Индукционная паяльная станция
Для удобного подключения к выводам электронных устройств, к контактным штырям плат и приборов применяются самозажимные устройства, насадки-«крокодилы».
Различные виды исполнения «крокодилов»
Существует много вариантов исполнения «крокодилов». Они могут отличаться размерами, быть «голыми» либо изолированными. Крокодилы для мультиметра производятся как из стали, так и из латуни, могут быть «позолоченными» – с покрытием из нитрида титана.
Как изготовить самодельные щупы
В ряде случаев нет возможности приобрести дорогие фирменные приспособления, а надо сделать удобные, надежные и долговечные щупы для мультиметра своими руками.
Стандартные самодельные щупы
Для изготовления самодельных щупов применяют пластиковые корпуса авторучек или цанговых карандашей. В качестве контактных штырей используют толстые швейные иглы.
Кабель для провода щупов следует брать многожильный медный, с силиконовой изоляцией либо с изоляцией из EPDM каучука. Такие провода обладают большой гибкостью, не подлежат растрескиванию, не ломаются.
Кроме того, имеют хорошую механическую стойкость к возможным прожогам при случайном касании горячего жала. Для подключения проводов к мультиметру используются разъемы «банан».
Заднюю часть иглы облуживают и припаивают к ней провод. Чтобы припой лег надежно, следует применить паяльный флюс на базе соляной или ортофосфорной кислоты. Сборку помещают в корпус будущего щупа. Наконечник закрепляют термоклеем или эпоксидной смолой либо полиуретановым клеем.
На выступающий из ручки провод одевают термоусадочную трубку-кембрик и осторожно прогревают ее. Второй конец провода закрепляют пайкой или винтовым зажимом в разъеме «банан». Здесь для прочности провода также необходимо применить термоусадочную трубку.
В результате получатся удобные и надежные изделия.
Самодельные щупы для мультиметра
Сопротивление проводов должно быть в районе 0,05-0,08 Ома. Щупы изготовлены под конкретного пользователя. Такие провода для электронного тестера – мультиметра будут надежно служить пользователю долгое время.
Тонкие самодельные щупы для прокалывания изоляции
Бывает, что необходимо измерить напряжение в проводах, при этом снять с них изоляцию не представляется возможным. На помощь приходят щупы, способные без лишних повреждений проколоть изоляцию и обеспечить надежный контакт с жилой провода.
Изготавливаются такие щупы аналогично стандартным, но иглы для контактных штырей берутся более тонкими, короткими и острыми. Такие щупы позволят легко подключиться к изолированным проводам.
Термопара для мультиметра
При наличии в «арсенале» приспособления к мультиметру – термопары становится возможным точно измерять температуру промышленных или бытовых объектов и устройств.
Такое приспособление продается в специализированных магазинах, однако термопара своими руками изготавливается достаточно несложно, иногда бывает проще сделать ее самому. Нужны опыт, соответствующие материалы и некоторое несложное оборудование.
Внимание! При проведении работ необходимо позаботиться о пожарной безопасности, защите рук, лица и глаз.
Основная операция – сварить концы двух отрезков проволоки из разных сплавов. Сварку лучше всего произвести электрической дугой. Потребуется силовой сетевой трансформатор с выходным напряжением 6-12 Вольт и током вторичной обмотки 5-8 ампер.
Один провод обмотки подключается к тискам, где закрепляются отрезки проволоки, второй – к графитовому стержню-контакту.В качестве графита можно применить щетку от электродвигателя, электрод от гальванического элемента (батарейки) либо толстый грифель от карандаша.
Схема для сварки термопары
Следует сделать скрутку проводов на одном из концов будущей термопары. Включить трансформатор в сеть и коснуться графитовым контактом скрутки проводов. Может быть не с первого раза, но после нескольких попыток на конце проволок появится шарик сплава.
Замечание. Вместо трансформатора можно применить автомобильный аккумулятор.
Затем провода термопары следует изолировать друг от друга керамическими трубками или тонким «чулком» из стеклоткани. Свободные концы термопары с помощью зажимов «крокодил» подключить к мультиметру. Имеются специальные адаптеры для подключения термопар к мультиметрам.
Следует провести градуировку термопары:
- Вариант 1. Провести измерения температуры эталонной термопарой и определить соответствие температуры для термоЭДС изготовленной термопары.
- Вариант 2 (менее точная градуировка). Если эталонной термопары нет, замерить сделанным термодатчиком температуру тающего льда – 0 0С и кипящей воды – 100 0С. Делая допущение, что характеристика термопары линейна, построить график-экстраполяцию за пределы значений 0-100 0С.
Пары сплавов для изготовления термопары
Одна из лучших пар – сплавы хромель и алюмель. Здесь хорошая линейность зависимости температуры от термоЭДС, пределы измерения температур от – 200 до 1300 0С.
Чуть хуже результаты у пары хромель – копель.
Лучший результат у пары платина – платинородий, максимальная измеряемая температура – до 1600 0С, высокая точность и стабильность, но эта пара – драгметаллы.
В домашних условиях можно сварить термопару из нихрома – стали и самую простую из меди – стали. Максимум измеряемой температуры – 350-400 0С, нелинейная рабочая зависимость, зато очень доступные материалы.
Зачастую отремонтировать «забарахливший» мультиметр возможно заменой или изготовлением собственными руками комплекта щупов, именно той комплектации, которая потребуется в работе. Такой набор приспособлений для электронного тестера будет оптимальным для конкретного измерителя.
Как сделать термопару своими руками — Металлы, оборудование, инструкции
Большинство предметов для обогрева и измерения, которые мы применяем в быту, требуют использования особых элементов контроля. Такие контроллеры (термопары) предохраняют приборы от перегрева и поломок.
Термопару можно использовать и для небольших домашних измерений, и для лабораторных опытов. Для этого не нужно специально искать ее в магазинах.
Можно разобраться в ее устройстве и сделать термопару для мультиметра своими руками.
- Описание и характеристики
- Принцип работы
- Изготовление термодатчика
Термопара — это прибор, состоящий из двух различных проводников, которые соединяются в одной или нескольких точках компенсационными проводами.
Когда на одном конце провода происходит измерение температуры, на другом создается напряжение определенного значения и силы.
Это устройство используется для контроля температуры, а также для преобразования температуры в электрический ток.
[attention type=yellow]Стоит термодатчик совсем недорого. Этот прибор вполне стандартный и измеряет большой диапазон температур. Единственным минусом в работе элемента является неточность, которая может составлять до 1 °C, а это немало для таких значений.
[/attention]
Сделать термопару в домашних условиях не составит труда. Необходимо только помнить, что эти устройства создаются из специальных сплавов, поэтому прослеживается предсказуемая и стойкая зависимость между напряжением и температурой.
Датчики бывают разных типов. Они классифицируются по типу используемых металлов для сплава:
- хромель — алюмелевые;
- платинородий — платиновые.
От состава зависит и среда применения, ведь такие контроллеры используют как в науке и промышленности, так и в домашних условиях — для котлов, колонок, духовых шкафов.
Термопары: принцип работы простым языком, типы
Практически все отопительные приборы в нашем доме нуждаются в использовании специальных контроллеров, которые предохранят их от перегрева. Предлагаем рассмотреть, что это такое – термопары, их принцип работы простым языком, виды приспособлений, а также основные характеристики подключения.