Измеритель ЭПС конденсаторов своими руками

ESR-метр

Измеритель ЭПС конденсаторов своими руками

В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово “ESR”? А ну-ка бегом читать эту статью!

Для чего нужен ESR-метр

Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит.  Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания.

В этих импульсных блоках питания “гуляют” высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и  переменого тока, то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота.

Это, конечно, в идеале. В  реальности же в каждом конденсаторе “спрятан” резистор. А какая мощность будет выделяться на резисторе?

P=I2xR

где

P  – это мощность, Ватт

I – сила тока, Ампер

R – сопротивление, Ом

А как вы знаете, мощность, которая рассеивается на резисторе – это и есть тепло 😉 И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора  – эффект очень нежелательный, так как при нагреве в лучшем случае он  меняет свой номинал, а в худшем  – просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.

Вздувшиеся электролитические конденсаторы – это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора.

Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох.

У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))

Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте  с Транзистор-метром:

Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.

Схема и сборка

В интернете очень давно гуляет схема простенького ESR-метра, а точнее – приставки к мультиметру.  С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же  рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:

Вместо “Cx” (в штриховом прямоугольнике) мы здесь ставим конденсатор, у которого замеряем ESR.

Для того, чтобы не травить лишний раз платку, я взял макетную плату и спаял на ней. На Али я взял целый набор этих макеток. Это получается даже дешевле, чем покупать фольгированный текстолит.

С обратной стороны макетной платы для связи радиоэлементов использовал провод МГТФ

Вы легко его узнаете по розовой  окраске. Хотя бывают и другого цвета, но в основном розовый.

Что это за “фрукт”? МГТФ расшифровывается как Монтажный, Гибкий, Теплостойкий, в Фторопластовой изоляции. Этот провод  отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.

Обратную сторону с проводами МГТФ  я показывать не буду). Там ничего интересного нет).

После сборки макетная плата выглядит вот так:

Микросхемы по привычке всегда ставлю в панельки:

При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)

Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:

Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.

Прибор выполнен в виде приставки к любому цифровому мультиметру:

Здесь есть одно “но”.  Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.

А вот и мой самопальный щуп:

Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.

Внутри корпуса платка  выглядит примерно вот так:

Провода, идущие к пинцету,  закреплены каплей термоклея. Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.

Калибровка прибора

После того  как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:

1)Если у вас есть осциллограф, замеряем на измерительных щупах напряжение с  частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.

2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.

3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.

4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1

5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра

6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.

Например, мы можем выставить соответствие 1 милливольт – это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у  нас типа 0 Ом ;-).

Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом – 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор

При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.

После того, как я сделал замеры, смотрю в другую табличку:

Слева – номинал конденсатора, вверху – значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в  таблице максимальное значение ESR конденсатора, который можно  использовать в ВЧ схемах.

Давайте попробуем замерить ESR  у двух импортных и одного отечественного конденсатора

Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).

Поправки к схеме

1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью.

Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме.

Например, блок питания можно собрать  по этой схеме.

2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с  великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам.

А что делают пробники? Отвечают в основном на два вопроса: да или нет ;-).

В данном случае прибор “говорит”, можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (НизкоЧастотную) схему.

Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:

Автор – Андрей Симаков

Источник: https://www.RusElectronic.com/esr-metr/

Прибор для проверки оксидных конденсаторов на ЭПС (ESR) | Мастер Винтик. Всё своими руками!

Измеритель ЭПС конденсаторов своими руками

Проблема быстрого контроля исправности оксидных конден­саторов решается, если использовать пробник, позволяющий примерно оценить емкость и эквивалентное последовательное сопротивление конденсатора без его демонтажа из ремонтируе­мой аппаратуры. Предлагается еще один вариант простого при­бора, аналогичного уже описанному в «Радио», но с использова­нием стрелочного индикатора.

Многих радиолюбителей, да и про­фессиональных мастеров по ре­монту радио- и телеаппаратуры, на­верняка заинтересовала статья Р. Хафизова «Пробник оксидных конденса­торов» в журнале «Радио» (2003, № 10, с. 21).

Общеизвестный метод проверки с помощью омметра, позво­ляя приблизительно оценить емкость и измерить утечку оксидных конден­саторов, далеко не всегда дает пол­ную информацию об их качестве. Опе­ративная проверка непосредственно на плате бывает затруднена из-за влияния элементов устройства.

Осо­бенно это касается наиболее часто используемых конденсаторов емкос­тью от единиц до нескольких десятков микрофарад.

После прочтения указанной статьи сразу же решил сделать такой прибор, но, как нередко бывает, под рукой не оказалось нужных микросхем. Поэтому вместо микросхемы К561ТЛ1 приме­нил, как мне кажется, более распрост­раненную К561ЛА7, стабилитрон КС127Д заменил на КС133А, вместо светодиодного индикатора использо­вал стрелочный индикатор уровня М68501 от магнитофона.

Применение стрелочного индикато­ра позволило сделать прибор более точным, достаточно компактным и бо­лее экономичным. Ток потребления не зависит от режима работы и составля­ет около 1 мА, что дает возможность использовать малогабаритный источ­ник питания — батарею из трех миниа­тюрных дисковых элементов для ла­зерной указки.

Несколько измененная схема при­ведена на рис. 1. Прибор позволяет с допустимой для пробника точностью оценивать эквивалентное последовательное сопротивление (ЭПС) конден­сатора в пределах от 2 до 50 Ом и ем­кость от 5 до 50 мкФ.

Конструктивно прибор может быть выполнен в виде мини-тестера с вы­носными щупами и выключателем пи­тания с фиксацией либо как пробник с установкой коротких заостренных щупов и кнопочным включением пита­ния, что существенно увеличит срок службы батареи.

В данном варианте размеры корпу­са составляют 90 x 45 x 20 мм. Индика­тор расположен с левой стороны попе­рек корпуса. Его магнитная система вставлена в отверстие в корпусе, а сам он приклеен к корпусу с внешней сто­роны. Монтаж элементов прибора вы­полнен на печатной плате, чертеж ко­торой приведен на рис. 2

Детали и замена

Для выбора вида измерений ис­пользован переключатель SA1 с фик­сацией из серии ПКН. Выключатель питания SA2 — миниатюрный движко­вый или кнопочный, расположен с внешней стороны корпуса рядом с индикатором.

Вместо указанной на схеме микро­схемы можно использовать К561ЛЕ5, аналогичные серии К176 или импортный аналог CD4011BE.

Транзистор КТ315Б можно заменить любым маломощным транзистором структуры п-p-n с коэффициентом передачи тока базы не менее 100 или импортным аналогом С1815.

Конденсаторы — малогабаритные керамические, резис­торы — мощностью 0,125 — 0,25 Вт. Ок­сидный конденсатор — К50-16 или импортный. Диоды VD2—VD5 — любые германиевые высокочастотные.

Тип стрелочного индикатора сущест­венного значения не имеет.

Настройка прибора

Налаживание прибора заключается в установке частоты генератора в пре­делах 60…80 кГц для измерения ЭПС и 800… 1000 Гц для измерения емкости путем подбора резистора R2 и соот­ветственно С2 и С1, а также в установ­ке стрелки индикатора на конец шкалы в режиме холостого хода подбором ре­зисторов R4, R5, R8. Предварительно резистором R6 выставляют постоян­ное напряжение на коллекторе транзи­стора, примерно равное половине на­пряжения питания.

Градуировка шкалы не составит большого труда, так как пластмассо­вые индикаторы уровня легко вскры­ваются: достаточно по периметру крышки «пройтись» лезвием ножа. На место старой шкалы наклеивают полоску бумаги, на которую затем на­носят соответствующие риски и над­писи. После градуировки шкалы крышку устанавливают на место и фиксируют клеем.

Нелинейность шкалы таких индика­торов играет положительную роль, позволяя несколько расширить диапа­зон измерений. Градуировка шкалы электрической емкости производи­лась путем усреднения замеров не­скольких новых конденсаторов одного номинала (по возможности с малым допуском), для градуировки шкалы ЭПС были использованы обычные не­проволочные резисторы.

После изготовления прибора была проведена проверка всего личного запаса оксидных конденсаторов. В результате более 30 % из них при­шлось выбросить. Далее прибор был опробован при поиске неисправности в мониторе, в котором не включалась строчная развертка.

Этот монитор по­бывал уже у двух мастеров и был воз­вращен назад ввиду «отсутствия элек­трической схемы и сложности ремон­та».

В течение нескольких минут ока­залось возможным проверить ЭПС и емкость всех имеющихся на плате оксидных конденсаторов, среди кото­рых был обнаружен один с завышен­ным значением ЭПС и заниженной емкостью. После его замены монитор заработал!

Автор уверен, что подобный прибор займет достойное место в арсенале измерительных приборов как радиолюбителей, так и профессионалов.

Редактор — А. Соколов, графика — Ю. Андреев

Вид со стороны дорожек

Набор для самостоятельной сборки прибора Вы можете купить на нашем сайте «Мастер» (В наборе печатная плата и все детали, кроме измерительной головки)

Вариант внешнего вида прибора

От редакции журнала «Радио». Эквивалентное по­следовательное сопротивление (ЭПС, а в англоязычной терминологии — ESR) конденсатора зависит от многих факто­ров: его типа, емкости, номинального напряжения, частоты, на которой про­водят измерения, и т. д.

Например, ЭПС танталовых конденсаторов для поверх­ностного монтажа емкостью от 4,7 до 47 мкФ на напряжение от 10 до 35 В, измеренное на частоте 100 кГц, нахо­дится в пределах от 0,9 до 5 Ом, причем оно увеличивается с уменьшением емкости и номинального напряжения.

У алюминиевых конденсаторов К50-38 емкостью от 4,7 до 47 мкФ на напряже­ние от 6,3 до 160 В ЭПС, также изме­ренное на частоте 100 кГц, увеличива­ется от 0,5 (47 мкФ х 160 В) до 5 Ом (47мкФх6,ЗВ) и от 4,5 (4,7мкФх160В) до 14 Ом (4,7 мкФ х 100 В).

Поэтому универсального критерия оценки при­годности конденсатора в зависимости от значения ЭПС не существует реше­ние по отбраковке следует принимать в каждом конкретном случае.

Радио №10, 2005г.

П О П У Л Я Р Н О Е:

  • Устройство и ремонт мультиметров серии М-830
  • Невозможно представить рабочий стол ремонтника без удобного недорогого цифрового мультиметра.В этой статье рассмотрено устройство часто распространенных цифровых мультиметров 830-й серии, его схема, а также наиболее часто встре­чающиеся неисправности и способы их устранения. Подробнее…

  • Устройство индикации для ориентации
  • Характерным примером устройства индикации является дистанционный указатель ориентации (см. рис.), позволяющий определить пространственное положение, например, антенны. Подробнее…

  • Как «оживить» игрушку?
  • У многих в доме много мягких и других игрушек. Некоторые издают звуки, другие двигаются, а некоторые просто сидят не гавкают, не мяукают и тем более не ходят и не подмигивают Источник: http://www.MasterVintik.ru/pribor-dlya-proverki-oksidnyx-kondensatorov/

    Как сделать ESR-метр конденсаторов своими руками

    Измеритель ЭПС конденсаторов своими руками
    При ремонте техники специалисты-радиомеханики сталкиваются с различными проблемами — повреждённые дорожки на платах, окисление, выгоревшие элементы, вздувшиеся конденсаторы. Эти неисправности прекрасно видны при первичном осмотре аппаратуры и устранить их с помощью самых базовых инструментов любого инженера не составляет труда. Но есть случаи, в которых визуального осмотра недостаточно.

    • Что такое ESR
    • Примеры проблем, связанных с ESR
    • Основные элементы устройства
    • Порядок калибровки прибора

    Конденсаторы бывают разной ёмкости, как очень большой (4000, 10000 мкФ), так и очень малой (0,33 мкФ, например, такие детали активно используются при сборке комплектующих различной оргтехники). И если вздутие верхней крышки первых отлично заметно из-за их размеров, то со вторыми выявление их неисправности может доставить немало проблем.

    В этом поможет простой прибор для проверки конденсаторов — ESR-метр. Своими руками его изготовить несложно, имея достаточные познания в схемотехнике. Он может быть как самостоятельным устройством, так и выполнен в виде приставки к цифровому мультиметру. С его помощью можно легко установить такие неисправности, как пробой и высыхание.

    Что такое ESR

    Электролитические конденсаторы имеют ряд параметров, важных для их правильной работы в схеме устройства.

    Это и его ёмкость, и сопротивление диэлектрика между выводами и корпусом, и собственная индуктивность, эквивалентное последовательное сопротивление или, на американский манер, Equivalent Series Resistance.

    ESR — это сопротивление обкладок конденсатора и его ножек, которыми он припаивается к плате, выводов.

    Существуют специальные формулы для расчёта этого показателя, но ими в реальной практике никто не пользуется. Гораздо проще собрать прибор для его измерения, и полученные результаты сверять с таблицей ESR электролитических конденсаторов, в которой приведены показатели в миллиомах, в зависимости от характеристик деталей — ёмкости и поддерживаемого напряжения.

    Примеры проблем, связанных с ESR

    Конденсаторы используются практически повсюду. Ни одна схема устройства, обладающего хоть минимальной сложностью, не обходится без них.

    В персональных компьютерах они встречаются в блоках питания, мониторах, около важных узлов материнских плат — сетевых и звуковых микросхем, в системе питания процессора, южного и северного мостов, оперативной памяти.

    В акустических системах и сетевом оборудовании (роутерах, коммутаторах, например) они встречаются около усилителей и LAN-портов. Все они обеспечивают стабильное питание этих элементов, а малейшие проблемы с питанием, как известно, могут привести как к проблемам в работе — зависаниям, торможению, так и к банальному отказу работать.

    Высохшие и пробитые конденсаторы невозможно обнаружить простым осмотром, поэтому именно измеритель ESR, может установить причину неисправности.

    Для этого детали, на которые пало подозрение, выпаиваются с платы и проверяются прибором. Проверять их без выпаивания не рекомендуется — показатели в этом случае могут быть слишком неточными.

    Если показатель сопротивления слишком высок, компонент должен быть заменён аналогом с наиболее низким ESR.

    Основные элементы устройства

    В основе схемы ESR-метра лежит микросхема генератора импульсов типа К561ЛН2, работающая на частоте до 120 кГц.

    Для дополнительного удобства саму микросхему можно не впаивать напрямую в плату, а использовать специальную панель с необходимым количеством ножек.

    Это позволит оперативно сменить вышедшую из строя деталь и заменить её без дополнительных операций с паяльником и отсосом припоя. В качестве аналога этого генератора можно использовать похожий по характеристикам К1561ЛН2.

    Настройка частоты выполняется цепью, состоящей из резистора и конденсатора. Регулировка и настройка измерения ESR осуществляется подстроечным резистором.

    В качестве питания используется либо стандартная CR2032, выдающая напряжение до 3 вольт, либо, если этого не хватает для работы, аккумуляторная батарейка на 9 вольт, подключаемая через специальную клемму (такие можно найти в некоторых часах с автономным питанием, например, или в старых батарейках типа Крона). В состав измерителя переменного напряжения входит мультиметр, который необходимо перевести в соответствующий режим, и германиевые диоды.

    Сборку тестера конденсаторов можно производить как на макетной плате размером примерно 4 на 6 сантиметров, так и на специальных печатных платах. Второй вариант получится немного дороже, но его преимуществом является наличие на плате обозначений всех нужных элементов и дорожек, их соединяющих.

    Печатные платы изготавливаются из фольгированного текстолита и перед проведением монтажа элементов контакты на них необходимо залудить припоем.

    При использовании макетных плат, размещение элементов и их соединение производится самостоятельно. Для создания схемы используются провода достаточной толщины с фторопластовой изоляцией, чтобы предотвратить их повреждение при тепловом воздействии.

    В качестве щупов можно использовать как покупные, так и самодельные. Во втором случае необходимо самостоятельно позаботиться о хорошей проводящей способности используемого материала и достаточной толщине провода, идущего к мультиметру. Использовать длинные провода, более 10 сантиметров, не рекомендуется.

    Возможные недостатки и замечания по работе этого устройства:

    1. При нестабильном питании от батарейки возможны сильные отклонения по точности измерений, следует не забывать периодически проверять батарейку мультиметром и не допускать её разряда больше, чем на 1 вольт.
    2. Даже при полностью исправной батарейке, прибор, выполненный таким образом, не претендует на звание высокоточного. Его можно использовать как некий индикатор работоспособности элементов и определить подойдёт ли конденсатор для установки или замены.

    Первый и второй недостатки имеют общее решение — достаточно установить в схему стабилизатор, питающийся напрямую от батарейки, и два конденсатора. Это повышает надёжность и точность прибора, что даёт возможность отбрасывать ситуации, при которых, если у измеряемого элемента сопротивление было слишком малым, мультиметр сигнализировал о коротком замыкании вместо ожидаемого значения.

    Порядок калибровки прибора

    После монтажа устройства на плате и первичных тестов, его необходимо откалибровать. Для этого понадобится осциллограф и набор резисторов для подстройки номиналом от 1 до 80 Ом. Порядок калибровки:

    1. Измеряем осциллографом частоту на щупах. Она должна быть в пределах 120—180 кГц. При более низкой или более высокой частоте она корректируется подбором резистора из набора.
    2. Подсоединяем мультиметр к щупам, выбираем режим измерения в милливольтах.
    3. Резистор в 1 Ом подключаем к щупам. С помощью подстроечного резистора в схеме выставляем на мультиметре значение напряжения в 1 милливольт.
    4. Подключаем следующий по номиналу резистор, не меняя значение, и записываем показания мультиметра. Повторяем со всем набором и составляем табличку.

    После калибровки прибором можно пользоваться. Он поможет в обнаружении неисправностей, связанных с реактивным сопротивлением. Их невозможно диагностировать другим способом.

    Источник: https://instrument.guru/svoimi-rukami/kak-sdelat-esr-metr-kondensatorov-svoimi-rukami.html

    Прибор для измерения ЭПС конденсаторов

    Измеритель ЭПС конденсаторов своими руками

    Нелинейность шкалы таких индика­торов играет положительную роль, позволяя несколько расширить диапа­зон измерений. Градуировка шкалы электрической емкости производи­лась путем усреднения замеров не­скольких новых конденсаторов одного номинала (по возможности с малым допуском), для градуировки шкалы ЭПС были использованы обычные не­проволочные резисторы.

    После изготовления прибора была проведена проверка всего личного запаса оксидных конденсаторов. В результате более 30 % из них при­шлось выбросить. Далее прибор был опробован при поиске неисправности в мониторе, в котором не включалась строчная развертка.

    Этот монитор по­бывал уже у двух мастеров и был воз­вращен назад ввиду «отсутствия элек­трической схемы и сложности ремон­та».

    Прибор для проверки оксидных конденсаторов на эпс (esr)

    Для начала необходимо убедиться в том, что генератор на транзисторе VT1 работает устойчиво при различных положениях движка R1 и активном сопротивлении между выводами «Cx» — 0…20 Ом.

    Для этого замыкают накоротко выводы «Cx», устанавливают движок R1 в левое по схеме положение и включают питание.

    Внимание Плавно вращая движок R1, наблюдают осциллографом возникновение и увеличение амплитуды колебаний на эмиттере VT1.

    Максимальная амплитуда колебаний должна составлять 600-700 мВ.
    При дальнейшем вращении R1 амплитуда колебаний уменьшается. Частота колебаний должна быть порядка 10-15 кГц. Установив резистором R1 максимальную амплитуду колебаний, подключают к выводам «Cx» рези­сторы величиной от 1 до 20 Ом (удобнее всего, использовать магазин сопротивлений) и наблюдают уменьшение амплитуды колебаний.

    Колебания при любом значении резистора должны быть устойчи­выми.

    Прибор для контроля эпс

    На микросхеме DA2 и микроамперметре РА1 собран милливольтметр, который измеряет напряжение на параллельно соединенных резисторах R4, R5 (или только R5) и проверяемом конденсаторе. Его чувствительность можно регулировать подбором резистора R8: при уменьшении сопротивления чувствительность увеличивается.

    Переменный резистор R9 служит для установки значения «∞» на шкале микроамперметра РА1, включенного в диагональ моста. Проверяемый конденсатор подключают к щупам, измеренное значение ЭПС считывают со шкалы микроамперметра.


    Каждый щуп подключен тремя проводами согласно схеме. Длина этих проводов не должна превышать 25 см.

    Такое подключение позволило получить сопротивление, при замыкании щупов не превышающее 0,15 Ом, что вполне достаточно для проверки любых конденсаторов емкостью не менее одной микрофарады.

    Измеритель эпс конденсаторов

    Внутри корпуса свободно размести­лись:

    • элемент питания типоразмера «D» (отечественный «373»);
    • потенциометр с выключателем СП3-10 (как в старой радиоаппаратуре);
    • плата с элементами схемы.

    Поскольку со свободным местом в корпусе миллиамперметра трудностей не возникало, то использо­ваны «крупногабаритные» конденсаторы:

    • C2, C3, C4, C5 — К73;
    • C1 — К71.

    Катушка L1 намотана на кольце К10х4х2 из феррита марки М2000НМ и содержит 50-60 витков про­вода ПЭВ-2 диаметром 0,3…0,5 мм. Транзисторы VT1, VT2 можно заменить другими, с аналогичными параметрами.

    Наладка прибора Так как параметры применяемого миллиамперметра, скорее всего, будут отличаться от описывае­мого в статье, то ёмкость конденсатора C4 придётся подобрать опытным путём. При пер­вых запусках пробника его рекомендуется отключить.

    Esr измеритель конденсаторов

    Важно Настройка прибора Налаживание прибора заключается в установке частоты генератора в пре­делах 60…80 кГц для измерения ЭПС и 800… 1000 Гц для измерения емкости путем подбора резистора R2 и соот­ветственно С2 и С1, а также в установ­ке стрелки индикатора на конец шкалы в режиме холостого хода подбором ре­зисторов R4, R5, R8.

    Предварительно резистором R6 выставляют постоян­ное напряжение на коллекторе транзи­стора, примерно равное половине на­пряжения питания.

    Градуировка шкалы не составит большого труда, так как пластмассо­вые индикаторы уровня легко вскры­ваются: достаточно по периметру крышки «пройтись» лезвием ножа.

    На место старой шкалы наклеивают полоску бумаги, на которую затем на­носят соответствующие риски и над­писи.

    После градуировки шкалы крышку устанавливают на место и фиксируют клеем.

    Прибор для проверки любых транзисторов

    Повышенное напряжение питания, требуемое для работы прибора. Чувствительность прибора можно легко повысить, уменьшив резисторы R5 и R6 до 1-2 ома и, соответственно увеличив усиление ОУ, возможно придется его заменить на 2 более скоростных.

    Схемы не сохранилось, да ее и можно сказать и не было, собрал со всего миру по нитке, то что меня устраивало схемотехнически, правда, за основу была взята такая вот схема из журнала радио: Были произведены следующие изменения: 1. Питание от литиевого аккумулятора мобильника2. исключен стабилизатор, так как пределы рабочих напряжений Литиевого Аккумулятора довольно узкие3.

    трансформаторы

    Измеритель эпс оксидных конденсаторов

    Напряжение питания подаётся на генератор и милливольтметр через LC-фильтры L1C5 и L2C11 соответственно. Индуктивность дросселей L1, L2 должна быть не менее 50 мкГн. Конденсатор С2 может быть оксидным на напряжение не менее 6,3 В, в этом случае его плюсовой вывод соединяют с выводом 3 микросхемы DA1. Рис.

    2 Прибор собран на двух печатных платах из фольгированного с одной стороны стеклотекстолита: на одной собран генератор (рис. 2), на второй — милливольтметр (рис. 3). Оксидный конденсатор С12 — К50-16 или импортный, остальные — КМ, постоянные резисторы — МЛТ 0,125, переменный — СП3-16.

    На плате генератора со стороны печатных проводников запаивают перемычку из изолированного провода, соединяющую выводы 2 и 6 микросхемы DA1. Диоды и резисторы монтируют перпендикулярно платам. Рис.
    Описание устройства В последнее время возрос интерес к такому параметру оксидных конденсаторов как эквивалент­ное последовательное сопротивление (ЭПС).

    Практика показывает, что оценка ЭПС конденсатора, при ремонте радиоаппаратуры, во многих случаях более информативна, чем измерение ёмкости или «про­звонка» стрелочным омметром.

    Поскольку величины ЭПС исправных конденсаторов составляют макси­мум единицы Ом, то измерение данного параметра вполне допустимо производить непосредственно в устройстве, без демонтажа конденсаторов, что, несомненно, является большим плюсом.

    Принцип работы большинства конструкций основан на измерении падения напряжения доста­точно большой частоты на проверяемом конденсаторе.

    Условно считают, что в этом случае ёмкостное сопротивление конденсатора значительно меньше ЭПС и, стало быть, падение напряжения пропорцио­нально ЭПС.

    В случае отсутствия микросхемы К548УН1А милливольтметр можно собрать на транзисторах серии КТ315 или подобных с коэффициентом передачи тока не менее 100. Схема такого варианта показана на рис. 4. Чертёж печатной платы из фольгированного с одной стороны стеклотекстолита для транзисторного милливольтметра показан на рис. 5.

    Источник: https://1000eletric.com/pribor-dlya-izmereniya-eps-kondensatorov/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.