Мини электростанция для дома своими руками

Электрогенератор своими руками в домашних условиях: чертежи и подробности

Мини электростанция для дома своими руками

Не всегда местные электросети способны полноценно обеспечивать электричеством дома, особенно, если это касается загородных дач и особняков. Перебои с постоянным электроснабжением или же его полное отсутствие заставляет искать альтернативные способы получения электричества.

Одним из таких является использование электрогенератора – прибора, способного преобразовывать и накапливать электричество, используя для этого самые необычные ресурсы (энергия солнца, ветра, приливов и отливов).

Его принцип работы достаточно простой, что делает возможным сделать электрогенератор своими руками. Возможно, самодельная модель не сможет конкурировать с аналогом заводской сборки, однако это отличный способ сэкономить более 10 000 рублей.

Если рассматривать самодельный электрогенератор в качестве временного альтернативного источника электроснабжения, то вполне можно обойтись и самоделкой.

Как сделать электрогенератор, что для этого потребуется, а также какие нюансы придется учитывать, узнаем далее.

Желание иметь в своем пользовании электрогенератор омрачается одной неприятностью – это высокая стоимость агрегата. Как ни крути, но самые маломощные модели имеют достаточно заоблачную стоимость – от 15 000 рублей и выше. Именно этот факт наталкивает на мысль о собственноручном создании генератора. Однако, сам процесс может быть затруднительным, если:

  • нет навыка в работе с инструментом и схемами;
  • нет опыта в создании подобных приборов;
  • не имеется в наличии необходимых деталей и запчастей.

Если же все это и огромное желание присутствуют, то можно попробовать собрать генератор, руководствуясь указаниями по сборке и приложенной схемой.

Не секрет, что покупной электрогенератор будет обладать более расширенным перечнем возможностей и функций, в то время как самоделка способна подводить и давать сбои в самые неподходящие моменты. Поэтому, покупать или делать своими руками – вопрос сугубо индивидуальный, требующий ответственного подхода.

Как работает электрогенератор

Принцип работы электрогенератора основывается на физическом явлении электромагнитной индукции. Проводник, проходящий через искусственно созданное электромагнитное поле, создает импульс, который преобразуется в постоянный ток.

Генератор имеет двигатель, который способен вырабатывать электричество, сжигая в своих отсеках определенный вид топлива: бензин, газ или дизельное топливо.

В свою очередь топливо, попадая в камеру сжигания, в процессе горения вырабатывает газ, который вращает коленчатый вал.

Последний передает импульс ведомому валу, который уже способен предоставить определенное количество энергии на выходе.

Читайте так же:  Тяговые подстанции — энергия для разных видов транспорта

Принцип работы устройства достаточно прост, но ровно до тех пор, пока нет необходимости рассмотрения каждого отдельного процесса.

Нужно понимать, что закон Фарадея о принципах магнитной индукции, который используется в электрогенераторе, даст желаемый результат только тогда, когда будут созданы определенные условия.

Главным из них является правильный расчет и соединение главных конструктивных единиц.

Независимо от потребляемого топлива и мощности, электрогенераторы имеют два основополагающих механизма: ротор и статор. Ротор необходим для создания электромагнитного поля, поэтому в его основе лежат магниты, равноудаленные от сердечника. Статор неподвижен, позволяет приводить ротор в движение, а также регулирует электромагнитное поле, за счет наличия металлических блоков из стали.

Вариант изготовления электрогенератора своими руками показан на видео

Асинхронный генератор: особенности и преимущества

По типу вращения ротора генераторы бывают синхронными и асинхронными. Первые имеют сложную конструкцию, а также более чувствительны к перепадам напряжения в сети, что сказывается на их продуктивности. Асинхронные, напротив, обладают более простым принципом действия, а также имеют отличные технические характеристики.

На роторе синхронного генератора помещаются магнитные катушки, что усложняет процесс движения ротора, в то время как ротор асинхронного генератора скорее похож на обычный маховик.

Конструктивные особенности значительно влияют на КПД, и в синхронном есть его потери (до 11%).

В асинхронном показатель потери энергии снижается до 5%, что делает его более востребованным не только в быту, но и в производстве.

Также есть и другие преимущества асинхронных генераторов:

  1. Более простой корпус защищает двигатель от попадания влаги и отработанного топлива, снижая необходимость частого технического обслуживания.
  2. Генератор устойчив к перепадам напряжения, а также имеет выпрямитель на выходе, который защищает подключенные электроприборы от поломки.
  3. Устройство способно служить источником питания для приборов, имеющих омическую нагрузку и высокую чувствительность к скачкам напряжения: сварочные аппараты, компьютерная и вычислительная техника, лампы накаливания.
  4. Обладает высоким КПД, который сочетается с минимальным клирфактором (показатель потери энергии, которая затрачивается на нагрев самого прибора).
  5. Имеет срок службы не менее 15 лет, поскольку все используемые детали достаточно надежные и не поддаются быстрому износу в процессе эксплуатации.

Читайте так же:  Говорим про 10 кВт стабилизаторы напряжения для дома

Все эти преимущества дают повод к использованию именно асинхронного агрегата, а простота его конструкции позволяет собрать в домашних условиях.

Вариант электрогенератора с асинхронным двигателем Toyota

С чего начать и что потребуется?

Для того, чтобы собрать небольшой асинхронный генератор своими руками, потребуются такие конструктивные детали:

  1. Двигатель – его можно сделать самостоятельно, но это достаточно длительный и трудоемкий, поэтому лучше сэкономить время и взять двигателя из старых нерабочих бытовых приборов. Хорошо подходят двигателя от стиральной машинки и дренажных насосов.
  2. Статор – лучше брать готовый вариант, где уже будет находиться обмотка.
  3. Провода электрические, а также изолента.
  4. Трансформатор или выпрямитель – нужен в том случае, когда получаемая на выходе электроэнергия имеет различную мощность.

Итак, приступим к работе, предварительно выполнив несколько подготовительных манипуляций, позволяющих произвести расчет мощности будущего генератора:

  1. Подключаем двигатель в сеть, чтобы определить скорость вращения. Для этого нужно воспользоваться специальным прибором – тахометром.
  2. Записываем полученную величину и прибавляем к ней 10%, так называемая компенсаторная величина, которая позволит исключить перенагрев двигателя в процессе работы.
  3. Подбираем конденсаторы, учитывая необходимую мощность. Для удобства величины можно взять из таблицы, расположенной ниже.

Поскольку электрогенератор продуцирует электричество, нужно позаботиться о его заземлении. Отсутствие заземления и плохая изоляция может стать причиной не только быстрого износа прибора, но и представлять опасность для жизни.

Сам процесс сборки крайне прост: к двигателю поочередно подсоединяем конденсаторы, руководствуясь указанной схемой. В схеме отображена поочередность подключения, при этом емкость каждого последующего конденсатора аналогична предыдущему.

Это все, что нужно для получения маломощного генератора, способного снабжать электричеством электропилу, болгарку или циркулярку.

Этот вариант создания генератора самый простой и удобный, но имеет свои нюансы:

  1. Во-первых, придется постоянно следить за температурой двигателя, не давая ему перегреваться.
  2. Во-вторых, если КПД будет снижаться прямопропорционально продолжительности работы – это норма. Поэтому время от времени генератору нужно давать отдыхать, снижая его температуру до 40-45°С.
  3. В-третьих, отсутствие автоматики заставит пользователя самостоятельно контролировать все процессы, периодически подсоединяя измерительные приборы к генератору (вольтметр, амперметр и тахометр).
  4. Перед сборкой важно подобрать правильное оборудование, рассчитав его основные показатели и характеристики. Чертеж и схема значительно облегчат процесс работы.
  5. Генератор на дровах или ветряной можно собрать подобным образом, однако для получения нужного напряжения на выходе потребуется достаточное количество энергоресурса.

Читайте так же:  Делаем компрессор для аэрографа своими руками

Преимущества и недостатки собственноручной сборки

К положительным сторонам самодельного изготовления электрогенератора своими руками можно отнести:

  1. Повышение собственной самооценки, что крайне важно для мужчин. Удачно собранный агрегат может стать предметом не только альтернативного источника питания, но и гордости.
  2. Значительная экономия финансов.
  3. Способность создать такой аппарат, который бы отвечал всем заявленным требованиям.

Помимо этого, процесс может усложняться и иметь массу негативных последствий:

  1. Возможно, агрегат будет часто ломаться, что обусловлено невозможностью герметичного соединения всех отделов генератора.
  2. Неправильное подключение или расчет мощности приведет к неисправности генератора, а также снизит его продуктивность на порядок.
  3. Требуется определенный навык в работе, а также осторожность, поскольку все работы осуществляются с электричеством, с которым, как известно, шутки плохи.

Интересный вариант. Электрогенератор из велосипеда

Заключение

Таким образом, электрогенератор своими руками, может стать отличным вариантом альтернативного электроснабжения.

Его мощности будет достаточно для обеспечения электроэнергией строительных приборов, а также небольших домашних приборов.

Поскольку работа производится с электричеством, то у людей, не имеющих ни малейшего представления о серьезности и опасности проделываемых манипуляций, электрогенератор может не получиться.

Не секрет, что сделанный своими руками генератор, будет раз в 5 дешевле, но не факт, что его продуктивность может конкурировать с покупной моделью заводской сборки, оснащенной автоматикой. Отказаться от подобной затеи следует в таких случаях:

  • если нет уверенности в собственных силах и знаниях;
  • когда несколько попыток сборки не увенчались успехом;
  • если нет в наличии соответствующего оборудования и измерительных приборов;
  • если нет навыка в расчетах и подборе компонентов прибора, а также в чтении схем.

При наличии всех необходимых конструктивных деталей можно попробовать собрать агрегат своими руками. Если процедура не увенчалась успехом – всегда можно прибегнуть к помощи покупных моделей.

Покупка электрогенератора имеет только один минус – это высокую стоимость.

Однако в некоторых случаях она вполне оправдана точностью рабочего процесса, а также возможностью самостоятельного контроля всего процесса переработки и преобразования постоянного тока в переменный.

Электростанция своими руками, видео — Ремонт220

Мини электростанция для дома своими руками

В условиях удаленности от централизованной системы электроснабжения (на даче, за городом) необходимость в поиске подходящего источника электрической энергии приводит к рассмотрению вариантов постройки электростанции своими руками.

Чаще всего при этом рассматриваются проекты экологических электростанций, источником энергии которых являются природные факторы. К таким электростанциям относят ветряные, солнечные и водяные.

Предлагаемые в продаже подобные агрегаты, как правило, имеют слишком высокую стоимость и не всегда удовлетворяют требованиям конкретной ситуации со стороны потребителей электроэнергии.

Немаловажным минусом покупных электростанций является необходимость единовременно затратить довольно значительные денежные средства, что не всегда реализуемо.

В то же время электростанция своими руками – это проект, который можно создавать постепенно, затраты на него растягиваются во времени, а результат от ее работы можно ощутить с проверкой на практических примерах.

Важно понимать, что каким бы ни был источник энергии (солнце, ветер или вода), самодельная электростанция в любом случае должна иметь в своем составе аккумуляторный накопитель электрической энергии и электронную систему, управляющую работой электроэнергетического комплекса.

Ветряная электростанция для дома своими руками

Для того, чтобы создать ветряную электростанцию своими руками, необходимо сконструировать ветродвигательную установку, присоединить к ней электрический генератор и подключить его выход к системе управления накоплением и расходованием электроэнергии.

В качестве ветродвигательной установки чаще всего рассматривают варианты с горизонтальным и вертикальным вращением ротора ветряной электростанции. Конструктивно вариант вертикальной оси вращения ротора представляется более реализуемым из-за простоты конструкции.

Она представляет собой вал, на котором крепятся параллельные ему лопасти.

Каждая лопасть – это кусок листового материала (сталь, дюралюминий, многослойная лакированная фанера и т.п.), изогнутый по дуге так, что бы получилось подобие крыла. Оно имеет прямоугольную форму и крепится к валу длинной стороной параллельно оси его вращения.

На валу может быть несколько таких лопастей. В более сложных конструкциях ветровых электростанций предусматривается механизм изменения углового положения лопастей.

Это позволяет регулировать воздушное сопротивление агрегата и минимизировать его в случае возникновения слишком сильного ветра (чтобы избежать разрушения конструкции).

Солнечная электростанция для дома своими руками

Конструкция самодельньной солнечной электростанции, построенной своими руками, представляет собой сочетание самодельной солнечной батареи и системы накопления и расходования электроэнергии.

В такой электростанции наиболее дорогостоящей частью является набор солнечных элементов, которые необходимо поместить в защитный поддон.

После соединения солнечной панели с аккумулирующей системой остается правильно установить и ориентировать фотопанели.

В некоторых конструкциях солнечных панелей для этого предусматриваются специальные стойки, позволяющие регулировать угол наклона панели и фиксировать азимутальную ее ориентацию. Это позволяет обеспечить максимальность количества получаемой электроэнергии в зависимости от положения солнца.

Водяная электростанция своими руками

Безусловным достоинством водной самодельной электростанции как на видео является независимость выработки ею электроэнергии от наличия благоприятных природных погодных факторов – ветра и солнца. Вода в реке или ручье течет круглые сутки, а в некоторых местах – в течение всего года.

Соответственно получение электроэнергии имеет более стабильный характер, определяемый, главным образом, перепадом высоты воды.

Впрочем, это не избавляет от необходимости включения в состав водной электростанции системы накопления вырабатываемой электроэнергии, компенсирующей изменения величины потребляемого тока (днем он может быть больше, а ночью – меньше).

БКак и в варианте ветряного энергоагрегата, в состав гидроэлектростанции входит лопастная установка, электрогенератор и конструкция, объединяющая все эти устройства в одну систему. В качестве электрогенератора можно использовать соответствующий узел от легкового или грузового автомобиля в комплексе с его электрической обвязкой.

Мы искренне надеемся, что наша статья с видео помогла вам ответить на вопрос, как сделать домашнюю электростанцию своими руками.

Домашняя электростанция своими руками. Часть 1

Автономная электростанция своими руками

Мини электростанция для дома своими руками

И свет стал. Во всяком случае, так говорится в Ветхом Завете. На деле же снабдить электричеством дачный домик далеко не просто. Когда еще подведут к участку линию электропередач! Вот и приходится как-то выходить из положения: одни обзаводятся свечами да керосиновыми лампами, другие покупают японские бензогенераторы с приводом от двигателя внутреннего сгорания.

Впрочем, я думаю, читателям моего сайта об альтернативных источниках энергии сделать такую автономную электростанцию своими руками не слишком сложно. Тем более, что практически все комплектующие для такого аппарата найти можно.

В качестве силового агрегата вполне подойдет двигатель типа Д-8 — такими моторами комплектовались легкие мопеды (мы в детстве называли их «дырчиками»). Д-8 имеет мощность около 1 л.с.

(0,736 кВт) при частоте вращения 4500 об/мин и работает на смеси моторного масла с бензином А-76.

Электрогенератор для нашей автономной электростанции — «жигулевский», типа Г-221, по стечению обстоятельств его характеристики неплохо сочетаются с параметрами двигателя Д-8: при частоте вращения 5000 об/мин и напряжении 14 В ток отдачи генератора составляет 42 А и, соответственно, его электрическая мощность — 0,588 кВт. Так что, если учесть механические и электрические потери, два этих преобразователя энергии идеально подходят друг для друга.

Самодельную автономную электростанцию полезно оснастить автомобильным аккумулятором емкостью 50-60 А*ч, который даст возможность пользоваться электроэнергией, например, ночью, когда вращать двигатель нерационально. Вообще, наличие аккумулятора позволяет запускать генератор и заряжать аккумулятор в удобное для всех время, когда шум работающего двигателя никому не мешает.

Понадобится еще устройство, стабилизирующее напряжение и обеспечивающее подзарядку аккумулятора. Проще всего воспользоваться для этого электронным выпрямителем-стабилизатором типа БПВ-14-10, который применяется на ижевских мотоциклах.

Этот блок выпрямляет переменный трехфазный ток, вырабатываемый генератором, стабилизирует напряжение при токе до 10 А, обеспечивает зарядку аккумулятора и переключение питания потребителей от аккумулятора на генератор и обратно при изменении частоты вращения генератора или мощности нагрузки.

Можно, конечно, оснастить генератор электронным преобразователем постоянного тока в переменный напряжением 220 В и частотой 50 Гц, однако коэффициент полезного действия такого устройства не слишком велик. Да и к тому же сейчас в продаже помимо электроламп есть немало 12-вольтных бытовых приборов посложнее — телевизоров, магнитол, пылесосов, электродрелей, насосов, компрессоров и т.п.

Двигатель Д-8 оснащен рядом агрегатов, необходимых для его работы в паре с мопедом и совершенно бесполезных с электрогенератором. Поэтому имеет смысл демонтировать механизм сцепления вместе с крышкой, ведущую звездочку и ведущую моторную шестерню.

Вместо шестерни на оси коленчатого вала штатным винтом закреплена ведущая часть самодельной муфты сцепления. Эта муфта представляет собой точеный из алюминиевого сплава корпус с тремя ввинченными в него стальными пальцами, на которые надета резиновая втулка с шестью отверстиями.

В свободные три отверстия входят пальцы ведомой части муфты — шкива привода генератора, на котором и закреплены эти три пальца.

Понадобится топливный бак, а также мотоциклетный топливный кран с фильтром-отстойником. Можно воспользоваться баком от любого мопеда, однако форма его не слишком удобна для стационарного агрегата, поэтому имеет смысл сделать самодельную емкость, врезав в подходящую пластиковую или, лучше, алюминиевую канистру объемом 2,5-5 л топливный кран.

Двигатель Д-8 рассчитан на охлаждение набегающим потоком воздуха, поэтому придется организовать принудительное воздушное охлаждение.

Для этого из листового алюминия толщиной 2,5 мм нужно изготовить четырехлопастную крыльчатку вентилятора.

Привод крыльчатки — с помощью клиноременной передачи, причем клиновой ремень перебрасывается через штатный шкив генератора и самодельный шкив, выточенный из дюралюминия.

Шкив (он же — ступица вентилятора) вращается на подшипниках № 200, осью для них служит выточенная из стального прутка консоль. Последняя пристыкована к головке цилиндра двигателя и крепится двумя гайками — теми, что фиксируют головку цилиндра.

Нужно только спилить на головке пару центральных ребер охлаждения, ввернуть в цилиндр две новые удлиненные шпильки, а при монтаже развернуть головку цилиндра на 90°, чтобы ребра располагались по потоку воздуха, идущего от вентилятора.

Для организации воздушного потока в стенку корпуса вставлено направляющее сопло — часть пластикового ведра.

Основой мини-электростанции является металлический короб с каркасом из стальных труб квадратного сечения и обшивкой из листовой стали толщиной около 1 мм.

К одной из поперечин основания каркаса приварены передняя и задняя опоры двигателя — V-образно расположенные трубы диаметром 30 мм (вполне подойдут трубы от старой рамы дорожного велосипеда), усиленные косынками из листовой стали толщиной 2 мм — к ним с помощью штатных хомутов крепится двигатель. При этом нужно обеспечить наклон цилиндра двигателя «вперед» от вертикали на 15°.

Операцию эту удобнее всего производить по месту. Для этого на двигателе штатными хомутами закрепляются две трубчатые заготовки, подгоняются к поперечине и фиксируются несколькими сварочными точками. После контроля правильности установки опоры привариваются окончательно и усиливаются косынками.

Электрогенератор Г-221 крепится на основании каркаса практически так же, как и на двигателе автомобиля. Нужно только приварить к раме ушки и стойку. Фиксация генератора при этом обеспечивается парой гаек с шайбами и длинной шпилькой, проходящей через ушки и штатные кронштейны генератора, а также гайкой, соединяющей стойку со шпилькой штатного натяжного устройства.

Двигатель оснащен самодельным глушителем, представляющим собой полый цилиндр с приваренными к нему крышками, в котором располагается перфорированная труба.

Полость цилиндра заполнена так называемой путанкой — тонкой проволокой или, лучше, тонкой сливной стальной (еще лучше нержавеющей) стружкой.

Сбоку к цилиндру приварен выпускной патрубок с накидной гайкой — часть штатной выхлопной системы двигателя Д-8.

Как известно, двухтактные (особенно маломощные) моторы не отличаются высокой стабильностью в работе. Если зафиксировать дроссельную заслонку карбюратора в выбранном для работы положении, то через некоторое время частота вращения коленвала двигателя может произвольно измениться.

Поэтому мотор оснащен простейшим регулятором оборотов, управляющим дросселем карбюратора с помощью тяги и системы рычагов с приводом от энергии отработавших газов.

При произвольном увеличении частоты вращения коленвала заслонка на выхлопной трубе отклоняется, опуская при этом дроссель карбюратора и уменьшая тем самым обороты двигателя.

Доработка карбюратора для этого минимальна: нужно отвернуть крышку колодца дросселя, извлечь из него возвратную пружину, завернуть в дроссель вместо резьбового переходника троса «газа» жесткую тягу и установить крышку колодца.

При сборке на выступающий из крышки конец тяги надевается пружина, затем шайба, после чего тяга стыкуется с рычагом привода и подвижное соединение фиксируется гайкой.

Длину тяги привода, представляющей собой своего рода тандер, можно менять с целью регулировки оборотов мотора.

Запуск двигателя осуществляется ручным стартером, состоящим из ручной дрели, в патрон которой заправлена вилка со скошенными зубьями. Вилка вводится в направляющее сопло и состыковывается с вентилятором, после чего вращением дрели за рукоятку и осуществляется пуск двигателя.

Компоновка самодельной автономной электростанции:

  1. горловина бензобака;
  2. бензобак;
  3. вентилятор принудительного воздушного охлаждения;
  4. каркас короба мини-электростанции;
  5. двигатель Д-8;
  6. лента крепления бензобака;
  7. бензокран-отстойник;
  8. маховик вентиля бензокрана;
  9. обшивка короба;
  10. опоры двигателя;
  11. ушко крепления генератора;
  12. генератор автомобильный Г-221;
  13. стойка крепления генератора;
  14. аккумулятор автомобильный (12 В, 60 А*ч);
  15. муфта соединительная;
  16. сопло направляющее;
  17. труба глушителя.

Силовой агрегат самодельной автономной электростанции:

  1. хомут вентилятора охлаждения двигателя;
  2. лопасть вентилятора;
  3. рычаг-кулиса управления дроссельной заслонкой карбюратора;
  4. тяга-тандер;
  5. вилка фиксации рычага-пробки;
  6. рычаг-пробка;
  7. труба выхлопная;
  8. корпус глушителя;
  9. карбюратор двигателя;
  10. хомуты крепления двигателя;
  11. опоры крепления двигателя;
  12. ухо крепления генератора;
  13. генератор Г-221;
  14. стойка крепления генератора;
  15. поперечина основания каркаса;
  16. гайка крепления двигателя;
  17. гайка крепления генератора;
  18. ремень клиповой привода вентилятора;
  19. консоль вентилятора;
  20. гайка крепления консоли и головки двигателя;
  21. двигатель Д-8;
  22. муфта соединительная, упругая;
  23. крыльчатка-шкив генератора;
  24. втулка дистанционная;
  25. втулка-шкив вентилятора;
  26. крышка втулки;
  27. винт М5;
  28. кольцо стопорное;
  29. подшипник № 200 (2 шт.);
  30. кольцо резиновое соединительной муфты;
  31. палец ведущей части соединительной муфты;
  32. винт крепления ведущей части муфты;
  33. шпонка сегментная;
  34. часть муфты, ведущая;
  35. гайка крепления крыльчатки-шкива генератора;
  36. палец ведомой части соединительной муфты с гайкой и пружинной шайбой;
  37. заполнение глушителя;
  38. патрубок выпускной;
  39. кронштейн рычага-кулисы;
  40. тяга.

Принципиальная электрическая схема автономной электростанции сделанной своими руками:

  1. генератор автомобильный Г-221;
  2. выпрямитель-регулятор БПВ-14-10;
  3. аккумулятор (12 В, 60 А*ч);
  4. предохранитель;
  5. потребители.

Буквами на схеме обозначены: С1, С2 и С3 — фазы статорной обмотки генератора; M1 и М2 — обмотка возбуждения генератора; X1 -«минусовый» вывод обмотки возбуждения; Х2 — «минусовый» вывод аккумулятора; Х3 — «плюсовый» вывод на контрольную лампу; Х4, Х5 и Х7 — фазы статорной обмотки генератора; Х8 — «плюсовый» вывод аккумулятора.

Как сделать ветряк своими руками: сборка, этапы установки и рекомендации

Мини электростанция для дома своими руками

Самостоятельная сборка генератора электрической энергии, работающего за счет потоков воздуха, возможна в домашних условиях. Необходимы базовые знания физики, ручной инструмент и некоторые комплектующие. Любой сможет разобраться, как сделать ветрогенератор своими руками.

Изготовление ветряка: важные моменты

Самодельный ветрогенератор – устройство сравнительно простое. Но перед началом работ важно обратить внимание на ряд моментов:

  • высота мачты;
  • уровень создаваемого шума;
  • электромагнитные помехи.

Следует знать: существует широкий перечень ограничений, связанных с высотой возводимых зданий, сооружений. Например, рядом с аэропортами, мостами, некоторыми иными объектами городской инфраструктуры запрещено устанавливать мачты выше 15 метров. Предварительная юридическая консультация, общение с административными органами помогут избежать вопросов со стороны контролирующих организаций.

Сделанный своими руками ветряк нередко создает посторонние звуки. Они могут доставлять неудобства – особенно в ночное время. Нередко посторонние звуки служат причиной серьезных конфликтов между соседями. Перед началом эксплуатации желательно измерить уровень шума специальным прибором. Установленные законодательством нормативы:

  • менее 70 дБ – днем;
  • менее 60 дБ – ночью.

Электрический ток создается движением заряженных частиц обмотки статора. Подобные процессы иногда создают телепомехи. Важно предусмотреть экранирование. Разобраться, как сделать ветряк своими руками и снабдить его экраном, сравнительно просто.

Разновидности генераторов: преимущества и недостатки

Перед тем как собрать ветрогенератор своими руками следует изучить преимущества, недостатки разных типов. Наиболее популярны следующие виды:

  • вертикальные;
  • горизонтальные.

Среди вертикальных выделяют подкатегории:

  • генераторы Савониуса – характеризуются постоянной угловой скоростью (КПД составляет 30%);
  • ротор Дарье (простая сборка, но присутствуют сильные вибрации);
  • Геликоидный ротор – характеризуется равномерностью вращения вала (благодаря закрученным равномерно лопастям);
  • многолопастной ротор – имеет центральную ось, чувствителен даже к небольшому ветру;
  • ортогональный – выделяется нестандартным дизайном, вырабатывает энергию при силе ветре 0.7 м/с.

Основные преимущества вертикального типа:

  • не требуется настраивать – потоки ветра не играют роли;
  • возможна установка ниже 4 метров – обслуживание не доставляет серьезных проблем;
  • уровень шума редко превышает 40 дБ.

Единственный минус – сравнительно малый КПД. Причина проста – низкая скорость вращения ротора. Вертикальный ветрогенератор своими руками собрать, обслуживать несколько проще. Горизонтальные (крыльчатые) – обычно снабжаются несколькими лопастями. Потому вертикальная разновидность отличается большим КПД.

https://www.youtube.com/watch?v=2kKDyzpRLrU

Единственный минус – необходимо постоянно настраивать расположение, определять направление ветрового потока. Подобная особенность несколько снижает производительность. Ветрогенераторы для частного дома своими руками, изготавливаемые подобным способом, делятся на группы:

  • однолопастные – выделяются двигательными оборотами;
  • трехлопастные – выгодно отличаются большой производительностью (выработка – 7 мВт);
  • многолопастные (до 50 «крыльев») – имеют внушительную инерцию, устанавливаются для обеспечения вращения водяных насосов.

Существуют гибридные модификации. Изготовить самостоятельно, в домашних условиях, подобные затруднительно.

Мощность ветрогенератора

Предварительно нужно рассчитать нагрузку: какая мощность потребуется? Условно потребительские мощности можно разделить на 3 основные категории:

  • до 1 кВт;
  • 1-3 кВт;
  • более 5 кВт.

Первый вариант можно изготовить без стабилизирующего элемента выравнивающего напряжение питания. Как базовый компонент больше всего подходит:

  • автомобильный генератор;
  • двигатель стиральной машины.

Оптимальный выбор – автомобильный статор. На доработку уходит минимум времени. Достаточно перемотать катушку: необходимо большее количество витков. Электродвигатели от стиральных машин нужно снабдить мощными магнитами (используются для возбуждения обмотки). Такой мощности устройства применяются для освещения, подключения электрических водяных насосов.

Установки мощностью 1-3 кВт позволят обеспечить бесперебойную работу бытовой техники: стиральной машины, холодильника. Устройство аналогично менее мощным модификациям. Может также использоваться электродвигатель стиральной машины.

Сборка устройства мощностью более 3 кВт требует большого количества деталей. Оптимальный выбор – приобретение готового мощного электродвигателя. Требуется минимальная доработка.

По необходимости устанавливается дополнительно стабилизатор тока, трансформатор напряжения.

Сделать самому или купить?

Стоимость установок генерирования электрического тока напрямую зависит от вырабатываемой мощности. Установка Condor Home, рассчитанная на мощность 9 м/с, вырабатывающая 0.5 кВт, обойдется в 90 тыс. рублей. Модель, вырабатывающая 2 кВт – 150 тыс. рублей. 5 кВт – почти 300 тыс. рублей. Учитывая трудозатраты, стоимость всех компонентов самодельный ветряк обойдется дешевле.

Какие нужны комплектующие?

Прежде чем приступить к изготовлению ветрогенератора своими руками в домашних условиях следует подготовить все необходимые детали. Стандартный перечень включает:

  • лопасти – бывают разных типов (выбор вида зависит от направления, скорости ветра);
  • редуктор – позволяет самостоятельно регулировать скорость вращения вала;
  • кожух – экранирует помехи, защитит электронику, иные составные части (влага, насекомые могут повредить устройство);
  • аккумулятор – накапливает энергию, устанавливать не обязательно;
  • инвертор – трансформирует электрическое напряжение;
  • штанга (мачта) – позволяет приподнять лопасти над уровнем земли.

Подбор подходящих перечисленных выше компонентов занимает много времени. Собрать необходимые детали желательно заранее. Хороший выбор – двигатель стиральной машины.

Дополнительно нужно приобрести неодиммовые магниты. Готовый магнитный вал можно купить в магазине (цена колеблется в пределах 2.5-3 тыс. рублей). Стоимость мощных магнитов сопоставима по цене с новым ротором.

Возможно, имеет смысл приобрести готовую деталь – сэкономив время, деньги. Самостоятельное изготовление вала, возбуждающего обмотку статора – процедура сложная, требующая много времени, знаний.

Требуется выполнить электротехнический расчет, надежно зафиксировать компоненты.

Допущение ошибок приведет к невозможности эффективной работы. Самостоятельная сборка возможна по типовому шаблону. Самостоятельно нарисовать такой невозможно. Можно использовать специализированные чертежные программы. Например, AutoCAD, Compass. Напечатанный шаблон позволит соблюсти геометрию, избежать ошибок.

Двигатель стиральной машины должен быть мощностью от 1.5 кВт. Желательно приобрести неодимовые магниты – 32 штуки размером 0.5-1.2 см диаметром. Фиксация должна выполняться максимально надежно. Например, холодной сваркой или специальным клеем.

Обрабатывается поверхностью перед склеиванием – наждачной бумагой. Хорошо подходят двигателя старых советских стиральных машин. Например, модель «Вятка». Подобную бытовую технику сложно отремонтировать.

Потому ветряки для дома своими руками из такой машины — лучшее применение для деталей.

Помимо основных компонентов, клея потребуется инструмент. Перечень включает:

  • плоскогубцы;
  • дрель, шуруповерт;
  • отвертки (шлицевые, крестовые);
  • ножницы, канцелярский нож;
  • рулетка;
  • электрический лобзик;
  • клещи для снятия изоляции;
  • транспортир;
  • маркер – проставлять метки;
  • набор сверл, саморезы.

Сборка

Первый этап сборки ветрогенератора для дома своими руками – конструирование каркаса:

  • демонтируются сердечники ротора асинхронного двигателя, токарным станком срезается слой толщиной 0,2 см;
  • каждый сердечник снабжается пазом глубиной 0,5 см;
  • после завершения перечисленных этапов устанавливаются неодимовые компоненты – должны располагаться на равном удалении друг от друга.

Дистанция между отдельными магнитами – важный момент. Несоблюдения размеров, расстояния станет причиной снижения мощности. Магниты просто «слипнутся».

Чтобы избежать нарушения – следует разместить элементы на предварительно расчерченном листе жести. Крепление выполнятся клеем.

Процедура может быть травмоопасной – магниты будут отскакивать, могут ударить мастера. Необходимо надеть защитные очки.

Лопасти

Изготовление лопастей – один из самых сложных этапов. Тип крыла определяется заранее. Использовать можно материалы:

  • поливинилхлорид – это канализационные трубы различного диаметра;
  • алюминий – прочный, легкий;
  • стекловолокно – используется профессионалами.

Сантехнические магазины предлагают широкий выбор ПВХ труб – они отличаются диаметром, длиной, другими параметрами. Лучше подходят оранжевые (хорошо держат форму, прочнее своих серых аналогов). Важное преимущество – низкая стоимость. Такое решение подходит начинающим.

Алюминий – материал прочный, легкий. Используется в авиастроении, идеальное решение. Минусом является высокая стоимость. Обрабатывать подобный материал сложно, требуются специальный инструмент и определенные навыки. Оснастив ветряк алюминиевыми лопастями можно навсегда забыть об обслуживании винта.

Стеклоткань – прочный, почти невесомый материал. Обработка его требует большого опыта, навыков. Не подойдет изготавливающим домашний ветрогенератор своими руками впервые. Помимо рулонов стеклоткани потребуется подготовить большое количество эпоксидной смолы. Клей такого типа позволяет закрепить слои. Вырезание лопастей требует формирования матрицы. Она придает будущей лопасти форму.

Самостоятельно разработать форму лопасти сложно. Требуются познания в аэродинамике, физике, иных науках. Хорошее решение – использовать уже готовые решения. Например, трубы ПВХ диаметром 20 см.

Флюгер

Основа флюгерного типа позволит автоматически регулировать направление. Применяется деревянный брус длиной >60 см. Важно ответственно подойти к выбору древесины. Желательно использовать твердые породы. Например, дуб, лиственницу. Предварительно, перед монтажом, порода должна обрабатываться септиком, другими составами предотвращающими разрушение материала.

Основа служит для крепления:

  • хвоста;
  • генератора (двигателя стиральной машины).

Укрепить конструкцию можно хомутами, дополнительными брусьями. Нижняя часть используется для крепления фланца. Располагается такой на трубчатом отводе. Если масса флюгера невелика – подойдет мебельный фланец.

Штанга весом более 10 кг должны снабжаться сантехническими аналогами. Диаметром более 20 см. Неподалеку от точки крепления требуется сделать отверстие – оно необходимо для прокладки кабеля. Диметр – 10-20 см.

Электрический провод позволяет соединить статор с накопителем энергии, потребителем.

Основание и мачта

После завершения изготовления флюгера можно приступать к сборке опорной мачты. Оптимальная высота для домашнего использования – 6-8 метров. Желательно использовать трубу диаметром больше 5 см. Изготовление опоры – важный этап. Прочность соединений, диаметр влияют на устойчивость. Материал изготовления опоры:

  • толстая листовая фанера – толщиной 2 см;
  • стальной лист нержавейки толщиной 3.5 мм.

При использовании фанеры нужно ориентироваться на диаметр 700 мм. Крепление выполняется болтами. Необходимо сделать каждые 25 мм отверстия диаметром 12 мм. Таким способом выполняется штыревое крепление. Хорошее решение – использовать сантехнические фитинги:

  • фланцы;
  • уголки;
  • фитинги;
  • тройники.

Детали обходятся дешево, просто соединяются. Благодаря эффекту шарнира выполняется подъем, спуск мачты. Муфта-тройник – снабжается центральным отводом. Она необходима для крепежа штанги.

Можно воспользоваться подшипниками (обеспечивают вращение). Подобная конструкция гораздо сложнее. Требует наличия сварочного инвертора. Если высота более 7 метров – понадобятся растяжки.

Они фиксируют конструкцию, позволяют избежать падения.

Крепление выполняется хомутами из листового металла. Шарнирное соединение позволяет «положить» мачту, переждать непогоду. После – быстро вернуть в рабочее положение.

Мотор

Хорошее решение – использовать асинхронный двигатель. Большое количество зубов, полюсов будет серьезным преимуществом. Например, мотор 1.5 кВт снабжается 36 зубцами, четырехполюсной обмоткой, тонким проводом.

Снизить напряжение до 50 В, поднять силу тока можно путем перемотки проводником большей толщины. 4 полюса заменяются трехфазной 12-ти полюсной обмоткой.

Ротор должен быть выточен под высоту имеющихся магнитов. При использовании асинхронного двигателя комфортное решение – неодимовые магниты шайбовидного типа размером 18×10 мм. Избежать залипания можно путем наматывания скотча. Магниты должны заливаться эпоксидной смолой.

Построенное на основе асинхронного двигателя «выдает» 50 В, 30 А.

Этапы установки ветрогенератора

Процесс монтажа собранного генератора включает основные этапы:

  • крепление основания;
  • установка мачты.

Поднять мачту проще вдвоем. Особенно если вес штанги составляет несколько десятков килограммов.

Рекомендации

При сборке ветрогенератора своими руками на 220 В либо меньшее напряжение нужно учитывать нюансы:

  • токопроводящий кабель стоит протянуть внутри трубы-мачты;
  • если используется трехфазная система – необходимо установить отдельный инвертор для каждой;
  • основание должно быть максимально прочным – хорошим решением станет заливка его бетоном;
  • электронику (инверторы, выпрямители, иное) важно закрыть защитным кожухом.

Ветряки – надежные, долговечные устройства. Ежедневный уход, обслуживание не требуется. При верном подходе к подбору элементов, конструированию можно обеспечить весь дом электрической энергией. Существует множество модификаций для домашнего использования. Выбирать следует исходя из бюджета, собственных знаний, умений.

Интересные видео по теме:

Мини-гидроэлектростанция для частного дома своими руками

Мини электростанция для дома своими руками

27 марта 2019

Гидроэлектростанции используют силу воды для получения электрической энергии. Самостоятельно изготовленные станции решают проблему удаленности от централизованных электросетей или помогают сэкономить на электричестве.

Преимущества и недостатки ГЭС

Гидроэлектростанции обладают следующими преимуществами перед другими видами альтернативных источников энергии:

  • Не зависят от погоды и времени суток (в отличие от солнечных электростанций). Это позволяет вырабатывать большее количество энергии с предсказуемой скоростью.
  • Мощность источника (реки или ручья) можно регулировать. Для этого достаточно заузить русло плотиной либо обеспечить перепад высот воды.
  • Гидроустановки не издают никакого шума (в отличие от ветряков).
  • Для многих типов станций небольшой мощности не требуется никаких разрешений на установку.

К минусам самодельных ГЭС относится невозможность работать в мороз. Кроме того, водная среда является агрессивной, поэтому детали станции должны быть водостойкими и прочными.

Скорость течения и способы его усиления

При проектировании мини-ГЭС для использования в качестве альтернативного источника энергии для собственного дома решающими должны быть следующие факторы:

  • Близость реки к дому. Устанавливать самодельную станцию в удалении от дома не стоит. Чем дальше установка, тем ниже ее эффективность, потому что часть энергии будет потеряна при передаче. Кроме того, так сложнее уберечь вашу ГЭС от кражи или порчи.
  • Достаточная скорость течения или возможность его увеличения. Мощность станции увеличивается в геометрической прогрессии при увеличении скорости воды.

Узнать скорость несложно. Бросьте кусочек пенопласта или теннисный шарик в воду и засеките время, за которое он проплывет определенную дистанцию. Затем разделите метры на секунды и вы узнаете скорость. Минимально достаточная скорость воды для самодельной ГЭС — 1 м/с.

Если скорость течения вашей реки или ручья ниже этого значения, то ее усилит маленькая плотина либо сужающаяся труба. Но эти варианты могут вызвать дополнительные трудности. Строительство плотины требует разрешения от властей, а также согласия соседей.

Мини-гидроэлектростанция своими руками

Конструкция ГЭС достаточно сложная, поэтому самостоятельно удастся построить лишь небольшую станцию, которая позволит сэкономить на электричестве или обеспечит энергией скромное хозяйство. Ниже приведены два примера реализации самодельной ГЭС.

Как сделать мини-ГЭС из велосипеда

Этот вариант ГЭС идеален для велопоходов. Он компактный и легкий, но сможет обеспечить энергией небольшой лагерь, разбитый на берегу ручья или реки. Полученного электричества хватит на вечернее освещение и зарядку мобильных устройств.

Для монтажа станции понадобится:

  • Переднее колесо от велосипеда.
  • Велогенератор, который используется для питания велосипедных фонарей.
  • Самодельные лопасти. Их вырезают заранее из листового алюминия. Ширина лопастей должна быть от двух до четырех сантиметров, а длина — от втулки колеса до его обода. Лопастей может быть любое количество, располагать их нужно на одинаковом расстоянии друг от друга.

Чтобы запустить подобную станцию, достаточно погрузить колесо в воду. Глубина погружения определяется экспериментально, примерно от трети до половины колеса.

Как построить мини-ГЭС на основе водяного колеса

Для постройки более мощной станции для постоянного использования понадобятся более прочные материалы. Лучше всего подойдут металлические и пластиковые элементы, которые легче защитить от воздействия водной среды. Но годятся и деревянные детали, если пропитать их специальным раствором и покрасить водостойкой краской.

Для станции необходимы следующие элементы:

  • Стальной барабан от кабеля (2,2 метра в диаметре). Из него изготавливается ротор-колесо. Для этого барабан разрезается на части и сваривается заново на расстоянии в 30 сантиметров. Из остатков барабана делают лопасти (18 штук). Их приваривают к радиусу под углом в 45 градусов. Для поддержки всей конструкции из уголков или труб изготавливают раму. Колесо вращается на подшипниках.
  • На колесо устанавливается цепной редуктор (коэффициент передачи должен равняться четырем). Чтобы легче свести оси привода и генератора, а также снизить вибрацию, вращение передается через кардан от старого автомобиля.
  • Для генератора подходит асинхронный двигатель. К нему следует добавить еще один шестеренчатый редуктор с коэффициентом около 40. Тогда для трехфазного генератора с 3000 оборотами в секунду при общем коэффициенте редуцирования 160 количество оборотов снизится до 20 оборотов в минуту.
  • Поместите всю электрику в водонепроницаемую емкость.

Описанные исходные материалы легко найти на свалке или у знакомых. За резку стального барабана болгаркой и за сварку можно заплатить специалистам (или же сделать все самостоятельно). В итоге ГЭС мощностью до 5 кВт обойдется в незначительную сумму.

Получить электричество из воды не так и сложно. Труднее выстроить автономную систему электроснабжения на основе самодельной ГЭС, поддерживать станцию в рабочем состоянии и обеспечивать безопасность людей и животных вокруг нее.

Солнечная электростанция на дом 200 м2 своими руками

Мини электростанция для дома своими руками

Частенько в сети проскакивают сообщения о борьбе за экологию, развитие альтернативных источников энергии. Иногда даже проводят репортажи о том, как в заброшенной деревне сделали солнечную электростанцию, чтобы местные жители могли пользоваться благами цивилизации не 2-3 часа в сутки, пока работает генератор, а постоянно.

Но это всё как-то далеко от нашей жизни, поэтому я решил на своем примере показать и рассказать, как устроена и как работает солнечная электростанция для частного дома. Расскажу обо всех этапах: от идеи до включения всех приборов, а также поделюсь опытом эксплуатации. Статья получится немаленькая, поэтому кто не любит много букв могут посмотреть ролик.

Там я постарался рассказать то же самое, но будет видно, как я все это сам собираю.
Исходные данные: частный дом площадью около 200 м2 подключен к электросетям. Трехфазный ввод, суммарной мощностью 15 кВт. В доме стандартный набор электроприборов: холодильник, телевизоры, компьютеры, стиральные и посудомоечные машинки и так далее.

Стабильностью электросеть не отличается: зафиксированный мною рекорд — отключение 6 дней подряд на период от 2 до 8 часов. Что хочется получить: забыть о перебоях электроэнергии и пользоваться электричеством, невзирая ни на что. Какие могут быть бонусы: Максимально использовать энергию солнца, чтобы дом приоритетно питался солнечной энергией, а недостаток добирал из сети.

Как бонус, после принятия закона о продаже частными лицами электроэнергии в сеть, начать компенсировать часть своих затрат, продавая излишки выработки в общую электросеть.

С чего начать?

Всегда есть минимум два пути для решения любой задачи: учиться самому или поручить решение задачи кому-то другому.

Первый вариант предполагает изучение теоретических материалов, чтение форумов, общение с владельцами солнечных электростанций, борьбу с внутренне жабой и, наконец, покупку оборудования, а после — установку.

Второй вариант: позвонить в специализированную фирму, где зададут много вопросов, подберут и продадут нужное оборудование, а могут и установить за отдельные деньги. Я решил совместить эти два способа.

Отчасти потому что мне это интересно, а отчасти для того, чтобы не напороться на продавцов, которым надо просто заработать, продав не совсем то, что мне нужно. Теперь пришло время теории, чтобы понять, как я делал выбор. На фото пример «освоения» денег на строительство солнечной электростанции. Обратите внимание, солнечные панели установлены ЗА деревом – таким образом, свет на них не попадает, и они просто не работают.

Типы солнечных электростанций

Сразу отмечу, что говорить я буду не о промышленных решениях и не о сверхмощных системах, а об обычной потребительской солнечной электростанции для небольшого дома. Я не олигарх, чтобы разбрасываться деньгами, но я придерживаюсь принципа достаточной разумности.

То есть я не хочу греть бассейн «солнечным» электричеством или заряжать электромобиль, которого у меня нет, но я хочу, чтобы в моем доме все приборы постоянно работали, без оглядки на электросети. Теперь расскажу про типы солнечных электростанций для частного дома. По большому счету, их всего три, но бывают вариации.

Расположу, по росту стоимости каждой системы.

Сетевая Солнечная Электростанция — этот тип электростанции сочетает в себе невысокую стоимость и максимальную простоту эксплуатации. Состоит всего из двух элементов: солнечных панелей и сетевого инвертора.

Электричество от солнечных панелей напрямую преобразуется в 220В/380В в доме и потребляется домашними энергосистемами. Но есть существенный недостаток: для работы ССЭ необходима опорная сеть.

В случае отключения внешней электросети, солнечные батареи превратятся в «тыкву» и перестанут выдавать электричество, так как для функционирования сетевого инвертора нужна опорная сеть, то есть само наличие электричества. Кроме того, со сложившейся инфраструктурой электросети, работа сетевого инвертора не очень выгодна.

Пример: у вас солнечная электростанция на 3 кВт, а дом потребляет 1 кВт. Излишки будут «перетекать» в сеть, а обычные счетчики считают энергию «по модулю», то есть отданную в сеть энергию счетчик посчитает, как потребленную, и за нее еще придется заплатить. Тут логично подходит вопрос: куда девать лишнюю энергию и как этого избежать? Переходим ко второму типу солнечных электростанций.

Гибридная Солнечная Электростанция – этот тип электростанции сочетает в себе достоинства сетевой и автономной электростанции. Состоит из 4 элементов: солнечные панели, солнечный контроллер, аккумуляторы и гибридный инвертор.

Основа всего – это гибридный инвертор, который способен в потребляемую от внешней сети энергии подмешивать энергию, выработанную солнечными панелями. Более того, хорошие инверторы имеют возможность настройки приоритезации потребляемой энергии.

В идеале, дом должен потреблять сначала энергию от солнечных панелей и только при ее недостатке, добирать из внешней сети. В случае исчезновения внешней сети инвертор переходит в автономную работу и пользуется энергией от солнечных панелей и энергией, запасенной в аккумуляторах.

Таким образом, даже если электроэнергию отключат на продолжительное время и будет пасмурный день (или электричество отключат ночью), в доме всё будет функционировать. Но что делать, если электричества нет вообще, а жить как-то надо? Тут я перехожу к третьему типу электростанции.

Автономная Солнечная Электростанция – этот тип электростанции позволяет жить полностью независимо от внешних электросетей. Она может включать в себя больше 4 стандартных элементов: солнечные панели, солнечный контроллер, АКБ, инвертор.

Дополнительно к этому, а иногда вместо солнечных панелей, может быть установлена ГидроЭлектроСтанция малой мощности, ветряная электростанция, генератор (дизельный, газовый или бензиновый). Как правило, на таких объектах присутствует генератор, поскольку может не быть солнца и ветра, а запас энергии в аккумуляторах не бесконечен – в этом случае генератор запускается и обеспечивает энергией весь объект, попутно заряжая АКБ. Такая электростанция легко трансформируется в гибридную, при подключении внешней электросети, если инвертор обладает этими функциями. Основное отличие автономного инвертора от гибридного – это то, что он не умеет подмешивать энергию от солнечных панелей к энергии из внешней сети. При этом гибридный инвертор, наоборот, умеет работать в качестве автономного, если внешняя сеть будет отключена. Как правило, гибридные инверторы соразмерны по цене с полностью автономными, а если и отличаются, то несущественно.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.