Оксигенераторы своими руками

Насыщение воды кислородом

Оксигенераторы своими руками

Доступность растворенного кислорода (РК) обычно является главным фактором, который ограничивает возможность увеличения плотности посадки в замкнутой системе водоснабжения. Измерение его концентрации проводится различными методами (подробнее). Использование только аэрации для обеспечения кислорода позволяет поддерживать плотность посадки 40 кг/м3.

Однако внесение чистого кислорода с помощью оборудования эффективной подачи газа повышает плотность посадки до 120 кг/м3. В расчет берется разница концентрации растворенного кислорода на входе емкости культивирования (10 мг/л при аэрации или 18 мг/л подача чистого кислорода) и на выходе системы.

Например, при концентрации растворенного кислорода на выходе 6 мг/л для дыхания рыбы доступно лишь 4 мг/л при аэрации (10 мг/л — 6 мг/л) и 12 мг/л при подачи чистого кислорода (18 мг/л — 6 мг/л). Таким образом, плотность посадки может возрасти с 40 кг/м3 до 120 кг/м3.

Интересно, что концентрация побочных продуктов (твердого осадка) при возрастании плотности зарыбления также возрастает. Поэтому необходимо более эффективное их удаление, например, использование микросетчатого фильтра.

Запросы водных организмов в отношении концентрации кислорода зависят от многочисленных факторов, включающих плотность посадки, количества вносимого корма, уровня стресса, температуры воды и ряда других. Холодноводные виды нуждаются в 0,3-0,5 кг кислорода на 1 кг корма.

При высоких температурах и наличии кислородного запроса со стороны биофильтра и других бактерий потребность в кислороде возрастает до 1 кг кислорода на 1 кг корма. Минимальные значения растворенного кислорода зависят также от потребностей конкретного вида рыб и условий выращивания.

Тилапия может выживать при таких уровнях растворенного кислорода, при которых радужная форель или лосось погибают в течение считанных минут. Стоит отметить, что концентрация O2 менее 4-6 мг/л снижает ростовые показатели.

Плотность посадки можно повысить путем повышения количеств вносимого корма, когда решена проблема с доступностью кислорода и снижены такие лимитирующие факторы, как общий уровень азотсодержащих продуктов, CO2, объем емкости культивирования. Повышение плотности зарыбления должно быть экономически оправдано.

Таким образом, концентрация растворенного кислорода является одним из наиболее существенных лимитирующих факторов, определяющих количество выращиваемой рыбы.

Тем не менее, интенсификация снабжения воды чистым кислородом, равно как и аэрация, ограничена, потому что на каждые 10 мг/л потребляемого O2 образуется 1,0-1,4 мг/л TAN (общий уровень азота), 13-14 мг/л CO2 и 10-20 мг/л твердых частиц в осадке. При потреблении кислорода системой более 10-22 мг/л (в зависимости от щелочности, pH, температуры, видов рыб) лимитирующим фактором становится концентрация растворенного углекислого газа (без снятия и контроля pH).

Аэрация атмосферным воздухом (слева) и оксигенация кислородной смесью (справа).

Перенос газов

Аэрация — процесс контакта газов с водой.

Когда воздух контактирует с водой, растворенные газы в воде достигают равновесной фазы, согласно парциальному давлению газов в атмосфере. На растворение газов влияют два фактора, площадь поверхности раздела сред «воздух-вода» и разница парциальных давлений (концентраций) газов при насыщении и в воде.

Например, если вода не насыщена газом, последний будет растворяться. В противном случае, при сверхнасыщении воды, газ начнет покидать воду. В простейшей капельной колонне можно удалять из воды сверхнасыщенный азот, тогда как кислород, не достигший этого состояния, напротив, начинает растворяться.

Скорость переноса газов зависит от дефицита (или избытка) их в растворе. Она пропорциональна константе, известной как коэффициент переноса газа. Общий коэффициент переноса газа определяется условиями, созданными с конкретной системе подачи газа.

Это составной показатель, включающий такие факторы, как коэффициент диффузии газов, толщина жидкостной пленки и площадь поверхности раздела фаз «воздух-вода». Озвученные факторы также обозначают пути для повышения общего количества переносимого газа.

Например, можно уменьшить толщину жидкостной пленки за счет перемешивания и создания турбулентных потоков; путем уменьшения размера пузырьков, повысить площадь поверхности раздела фаз «воздух-вода»; либо увеличить концентрационный градиент.

Концентрационный градиент можно повысить путем введения чистого кислорода, установкой систем повышенного давления, сдерживанием парциального давления газа в атмосфере от резких изменений при его протекании по системе переноса (увеличением площади поверхности раздела фаз).

Чистый кислород контактирует с водой, где достигает сверхнасыщенного состояния. При этом из раствора уходит незначительная доля азота. В условиях обычной аэрации плотность посадки остается относительно низкой (менее 40 кг/м3), но обеспечивается контакт воды с атмосферным воздухом, что предотвращает накопление токсических концентраций углекислого газа.

Кислородная смесь в 5 раз повышает растворимость кислорода в воде по сравнению с аэрацией обычным воздухом (48,1 мг/л против 10,1 мг/л при 15 °C). Возрастание давления с 1 до 2 атмосфер приводит к возрастанию растворимости кислорода в два раза (97 мг/л против 48 мг/л при 15 °C).

В рыбоводстве чаще всего используется три источника кислорода: кислородная смесь под высоким давлением, сжиженный кислород и генерация кислорода на месте. Для гарантированного присутствия кислорода во многих хозяйствах предусмотрено, по крайней мере, два источника его получения.

Кислородная смесь под высоким давлением, содержит от 3 до 7 м3 газа под давлением 170 атмосфер. С целью повышения емкости можно соединить вместе несколько баллонов.

Вследствие своей дороговизны и ограниченной вместимости, кислородные баллоны используются только в качестве запасного средства, на крайний случай.

Также кислород можно генерировать на месте, используя адсорбцию с перепадом давления (PSA – “Pressure Swing Adsorption”) или вакуумное адсорбционное разделение (VSA – “Vacuum swing Adsorption”). В обоих случаях для избирательной адсорбции или абсорбции азота из воздуха для продукции смеси, обогащенной кислородом, используется молекулярный микрофильтр.

На рынке представлены модели, производительностью 0,5-14 кг кислорода в час при 0,7-3,3 атмосферах. Для продукции смеси, содержащей 85-95% кислорода, требуется источник сухого, отфильтрованного воздуха, подаваемого под давлением 6,0-10,0 атмосфер. PSA и VSA операционные единицы функционируют периодически и включаются только по необходимости.

Они очень надежны и не требуют большого ухода. Тем не менее, данное оборудование очень дорого стоит, равно и как его работа, что связано с необходимостью подачи воздуха под высоким давлением.

Кроме того, так как для своей работы PSA и VSA единицы нуждаются в электричестве (1,1 кВт на 1 кг O2), на случай его отключения необходим запасной источник чистого кислорода.

Очень часто существует возможность получить жидкий кислород 98-99% чистоты, который может транспортироваться и храниться в контейнерах типа сосуда Дьюара. При 1 атмосфере жидкий кислород вскипает при -182.96°C, поэтому требуется специальный криогенный контейнер для хранения.

Он может варьировать в размерах от 0,11 м3 до 38 м3, и обычно арендуется или поступает в лизинг от поставщиков, хотя небольшие емкости могут продаваться. Четыре с половиной литра жидкого кислорода эквивалентно 3,26 м3 газообразного кислорода. Максимальное давление в контейнере варьирует от 8,775 до 11,7 атмосфер.

Перед использованием жидкий кислород испаряется непосредственно через теплообменники. Система хранения жидкого кислорода состоит из емкости для хранения, теплообменника-газификатора и регулятора давления. Использование данного оборудования зависит от транспортных расходов, и снижает затраты на поддержание и покупку PSA систем.

Оборудование для хранения и подачи жидкого кислорода очень надежно и работает даже при отключении электричества. Проблемы наблюдаются при его использовании в качестве запасного варианта на случай отключения электричества, когда хранимого объема газа оказывается недостаточно. Необходимо внимательно отнестись к возможным рискам и подбирать контейнеры достаточного объема.

Кислорода должно быть достаточно, по крайней мере, на 30 дней эксплуатации. При первых признаках ухудшения погодных условий и использовании сжиженной смеси благоразумно снизить количество вносимого корма, что уменьшит кислородные запросы рыб в течение следующих 24 часов.

Оборудование для оксигенации

В непрерывной жидкой фазе (пузырьки в воде): U-образные трубы, кислородные конусы (насыщение в нисходящем водном потоке), кислородный аспиратор, распылители.

Для переноса кислорода используются непрерывная газовая фаза (вода капает в воздухе): многоуровневые низконапорные оксигенаторы, упакованные или распыляющие колонны, колонны под давлением, закрытые механические поверхностные смесители.

Многоуровневые низконапорные оксигенаторы используются чаще всего, потому что они приспособлены для высокоскоростного потока с минимальным гидростатическим напором. Традиционный низконапорный оксигенатор был разработан Воттеном в 1989 году.

В настоящее время созданы разнообразные схемы данного устройства, которые, однако, имеют один принцип работы. Оксигенатор состоит из распределительной пластины, находящейся над несколькими (5-10) прямоугольными камерами.

Вода течет через заградительные пластины до конца канала, либо с помощью помпы направляется вверх от емкости с рыбой, через распределительную пластину, а затем падает через прямоугольные камеры. Камеры обеспечивают поверхность на границе раздела фаз, необходимую для смешивания и переноса газа.

Нисходящий поток собирается на дне каждой камеры и покидает их. Весь чистый кислород вводится во внешнюю или первую прямоугольную камеру. Смесь газов в первой камере постепенно распространяется по всем камерам. При прохождении от камеры в камеру газовая смесь постепенно теряет кислород, который растворяется в воде.

Наконец, остатки смеси покидают последнюю камеру. Каждая из прямоугольных камер газопроницаема. Отверстия между ними сделаны таким образом, чтобы препятствовать обратному смешиванию воды.

Многоуровневые низконапорные оксигенаторы. Справа конструкция с коническим дном.

Подача кислородаОбъем газа/жидкостиЭффективность переноса кислорода
>8 мг/л

Чертёж мини-УЗВ своими руками из доступных материалов

Оксигенераторы своими руками

Потребность человечества в морепродуктах растёт вместе с населением, а ценные виды рыб находятся на пределе максимально возможного улова. Традиционное рыбоводство требует избытка водных ресурсов.

Растущее загрязнение мирового океана сказывается на качестве даров моря.

Всё это способствуют популярности УЗВ (установок замкнутого водоснабжения), позволяющих выращивать экологически чистую рыбу в небольшом количестве воды.

УЗВ, позволяющие выращивать экологически чистую рыбу, набирают все большую популярность

Принцип работы УЗВ

В качестве системы жизнеобеспечения водных организмов в рециркуляционных аквакультурах незаменимы установки замкнутого водоснабжения, позволяющие использовать ежедневно не менее 90% восстановленной после жизнедеятельности рыб воды.

Как правило, УЗВ предназначены для интенсивных аквакультур с высокой продуктивностью на единицу объёма воды.

Верхний предел плотности рыбы в УЗВ на основе атмосферного воздуха составляет около 50 грамм на литр воды. В установках с использованием жидкого кислорода этот показатель может быть выше. такого количества живой рыбы в столь ограниченном объёме воды требует качественного проектирования и исполнения УЗВ. Как правило, рыба умирает от перенаселения, потому что:

  • задохнулась;
  • отравилась азотистыми отходами собственной жизнедеятельности.

УЗВ предназначены для активных аквакультур

Соответственно, верно функционирующая система циркуляции должна достаточно аэрировать воду, добавляя в неё кислород, и, наоборот, выводить диоксид углерода и аммиак.

Последний рыба выделяет в качестве продукта катаболизма белка. Для того чтобы эти процессы производились эффективно, необходимо предварительно отделять твёрдые экскременты и остатки корма.

Таким образом, восстановление воды включает в себя три процесса:

  1. Удаление твёрдых отходов.
  2. Газовый обмен.
  3. Денитрификация.

Последние два могут проводиться одновременно или в любой последовательности. Восстановление воды невозможно эффективно провести в самом аквариуме. Жидкость необходимо изымать для очистки и возвращать обратно, перемещая её с помощью насосов.

Устройство УЗВ может отличаться деталями от указанного на схеме

Устройство УЗВ от изображённого на схеме может отличаться наличием дополнительных модулей: фильтров, насосов, обеззараживателей, блока регулировки кислотности, нагревателей, кислородного генератора, измельчителей, автоматики, отстойников и т. п. Крупные фермы наращиваются умножением однотипных блоков. Основные преимущества систем рециркуляционной аквакультуры перед искусственными прудами и водоёмами:

  • не наносят ущерб окружающей среде;
  • дают возможность полного управления производственными процессами;
  • позволяют круглогодично выращивать рыбу;
  • не зависят от природных факторов;
  • помогают осуществлять полный контроль заболеваний;
  • работают в зонах экстремальных климатических условий.

Проектирование замкнутых аквакультур

В действующей системе все компоненты должны работать слаженно, иначе её продуктивность будет ограничена производительностью самого слабого блока.

Например, нет смысла в мощном нитрификаторе, если за его работой не успевает модуль газообмена. Прогноз нагрузок на каждый узел — единственно верный способ проектирования компонентов.

Правильной точкой отсчёта будет количество рыбы, планируемое к выращиванию. Этот показатель поможет разобраться с необходимым объёмом пищи, что, в свою очередь, позволит рассчитать, сколько кислорода понадобится для метаболизма этого корма.

Другие вычисления дадут мощность установки для аэрации и т. п.

Косвенные и прямые расчёты продолжают до тех пор, пока не будет разработан проект системы, теоретически поддерживающий предполагаемую нагрузку без избыточных мощностей каждого из блоков.

Точкой отсчета в сборке УЗВ является планируемое количество рыбы

Непромышленные УЗВ для выращивания рыбы своими руками для домашних хозяйств могут проектироваться на основании иных начальных условий. Доступность материалов и наличие свободного места в этом случае важнее производительности.

Компоненты для таких систем могут изготавливаться из самых различных материалов, но должны быть обязательно инертными и не вступать в реакцию с водой. Оцинкованные и медные трубы для инсталляции в этом случае непригодны, так как могут быть токсичны по отношению к обитателям системы.

Установка замкнутого водоснабжения для выращивания рыбы, исполненная из пластиковых ёмкостей, труб и фитингов — идеальный вариант.

Стеклопластиковые или полиэтиленовые резервуары химически нейтральны, легко чистятся и стерилизуются. Круглые ёмкости обладают преимуществом в сравнении с квадратными. Оно заключается в способности таких сосудов к самоочистке: если воду напорно подавать в радиальный аквариум под углом, то установится круговое движение.

Слив, организованный в центре, позволяет отходам и остаткам корма самостоятельно уходить в отверстие.

Простейшая самодельная установка

Из элементов, доступных в любом строительном магазине, и с помощью инструментов домашнего мастера можно за несколько часов изготовить мини-УЗВ своими руками. Чертёж установки из недорогих компонентов:

УЗВ можно собрать из недорогих материалов своими руками

Основа системы — две бочки, желательно предназначенные для пищевых целей.

Одна из них служит аквариумом для рыбы, из нижней части которого при помощи насоса вода перемещается в пластиковое ведро, вмонтированное в верхнюю часть второй бочки. Оно является ёмкостью для механического фильтра, отделяющего остатки корма и твёрдые фекалии.

Механически очищенная жидкость через стояк попадает на дно биофильтра для переработки азотистых отходов, а затем снова попадает в аквариум по возвратной трубе.

Подбор сантехнических компонентов зависит от максимальной мощности насоса, производительность которого можно регулировать шаровым краном на перегонном трубопроводе.

Подбор элементов УЗВ зависит от технических условий помещения

Механические фильтры можно сделать из хозяйственных губок или мебельного поролона. В качестве денитрификатора лучше использовать специальную плавающую биозагрузку для УЗВ. Воздушный компрессор низкого давления, нагнетающий воздух на дно аквариума, послужит аэратором.

Технические и биологические основы рециркуляционных аквакультур хорошо изучены. Накопленный опыт позволяет проектировать и изготавливать УЗВ любой сложности и масштабов. Единственный ограничивающий фактор, препятствующий бурному развитию замкнутых систем рыбоводства — экономика.

Рыба из УЗВ дороже пойманной в открытом водоёме. Самые успешные рециркуляционные аквакультуры производят дорогие морепродукты для нишевых рынков или расположены в экстремальных климатических зонах.

Эта технология пока не позволяет накормить весь мир, но её вклад в улучшение экологии водных бассейнов трудно переоценить.

(Visited 1 535 times, 16 visits today)

Оксидатор в аквариуме: что это и как работает,делаем своими руками

Оксигенераторы своими руками

Некоторые владельцы аквариумов вместо компрессора для аэрации стали ставить оксидатор. Рассмотрим это устройство, функции, принцип работы и как его сделать своими руками.

Что такое и зачем нужен оксидатор в аквариуме

Оксидатор является устройством, получающим кислород из перекиси водорода и поставляющим его в аквариум. Им можно заменить компрессор для аэрации, который также насыщает водную среду этим полезным газом. Особенно это актуально для аквариумов с небольшой поверхностью или слишком густой растительностью.

В ночное время разросшиеся водоросли активно поглощают кислород, и у рыбок может случиться удушье. Знаете ли вы? Хорошим природным индикатором, показывающим, хватает ли в аквариуме кислорода, являются улитки. При дефиците кислорода они находятся на водных растениях или на стенках. Если этого газа достаточно, то улитки могут быть на камнях или других декорациях.

Оксидатор состоит из таких деталей: ёмкость из стекла; пластиковая крышка с отверстиями; катализаторы; основание.

Сейчас в продаже можно найти оксидаторы для перевозки рыбы, для аквариумов различных объёмов и даже для прудов.

Принцип работы

В основе работы оксидатора лежит каталитическое разложение перекиси водорода, регулируемое температурой окружающей среды. Чем выше температура воды в аквариуме, в котором установлен оксидатор, тем быстрее разлагается перекись и больше получается кислорода, при этом чистая, еще не разложившаяся перекись, остается внутри.

Почему применение чистой перекиси без оксидатора – опасно?В первую очередь стоить отметить, что перекись вдвое тяжелее воды и поэтому сразу опускается на дно.

Если неспосредственно налить раствор или бросить таблетку сухой перекиси в воду, то она сразу не разложится на составляющие, а будет обжигать, окислять и отравлять близкие к ней придонные слои, корни растений и убивать полезные бактерии.Во-вторых, сразу резко понижается кислотность воды, водоем закиснет, все живые организмы погибнут.

Поэтому, процесс разложения перекиси на чистый кислород и воду должен идти медленно и подконтрольно.Секрет оксидатора прост – катализатором выступает керамика особого состава, которая полностью, медленно и дозированно, разлагает перекись водорода на воду (H2O) и активный кислород (O*).

H2O2 —керамический катализатор —> H2O + O*

Оксидатор — саморегулируемый прибор

Каким образом в течение продолжительного времени происходит выделение чистого кислорода? Ответ можно дать, если рассмотреть крошечную керамическую деталь, находящуюся в контейнере оксидатора. Эта деталь — маленький катализатор, освобождающий кислород.

Получаемый газ создает избыточное давление, благодаря которому раствор по капле выдавливается через небольшое отверстие в пробке колбы-контейнера. Количество раствора, вытекающего из контейнера, зависит не от размера отверстия, а от скорости работы катализатора.

Если катализатор будет работать слишком активно, в воду будет подаваться избыток раствора, если станет работать не в полную мощь, то количество раствора будет недостаточным.

Количество кислорода, подаваемое в воду зависит от:•    размера и количества используемых катализаторов;•    концентрации используемого раствора;

•    температуры воды.

Для морских и для больших пресноводных аквариумов применяются более крупные керамические катализаторы, длиной около 1 сантиметра. Для того, чтобы усилить продуктивность оксидатора, можно удвоить количество катализаторов, что, соответственно, увеличит выход кислорода в два раза.
Концентрация используемого раствора и температура воды

Отметим основные характеристики, на которые стоит обратить внимание:

•    При повышении температуры на 8 градусов выход кислорода в два раза увеличивается, при понижении температуры кратно снижается.•    Удвоение концентрации раствора увеличивает дозировку в четыре раза.

Это связано с тем, что из контейнера «выдавливается» в два раза больше раствора, содержащего двойную дозу кислорода.•    Из литра 30 % раствора перекиси водорода выделится суммарно 156 грамм чистого кислорода.

Этого количества хватит для однократного полного насыщения 20000 литров воды.

•    В теплой воде продолжительность работы оксидатора значительно меньше, чем в холодной

Продолжительность работы оксидатора зависит от:

•    температуры воды;•    емкости контейнера для раствора (чем она больше, тем прибор работает дольше, и наоборот);•    концентрации раствора перекиси (чем она выше, тем прибор работает меньше, и наоборот);

•    количества и размеров катализатора (увеличение количества катализаторов уменьшает продолжительность работы, и наоборот)

Оксидатор – средство от водорослей

Наличие оксидатора сильно увеличивает окислительно-восстановительный потенциал (редокс-потенциал) воды.

Это тормозит развитие водорослей, прекращает преобразование относительно неядовитых нитратов (NO3) в ядовитые нитриты (NO2), окисляет содержащиеся в воде органические вещества и продукты распада до углекислого газа (СО2). Чем больше углекислого газа растворено в воде, тем ниже показатель кислотности (рН).

Углерод (С) — самое важное пищевое вещество, содержащееся в воде в виде углекислого газа, угольной кислоты (Н2СО3) и гидрокарбоната кальция [Са(НСО3)2].

Важно помнить, что высшие растения используют более легко усваиваемый углекислый газ СО2, а нежелательные в воде водоросли потребляют углерод из гидрокарбоната кальция (который содержит, например, жесткая вода скважин и колодцев). Следовательно, большое количество углекислого газа СО2 полезно высшим водным растениям, а избыток Са(НСО3)2 — водорослям.

При создании течения или хорошей аэрации концентрация углекислого газа при заданной температуре будет стремиться к нормальной.

В этом случае в 1 л воды будет содержаться всего лишь 0,5 мг СО2; показатель рН в данном случае при карбонатной жесткости 10° будет около 8,9. Этот показатель неблагоприятен для большинства рыб.

Такое может случиться также при активном росте растений, содержащихся при ярком свете, и потребляющих большое количество углекислого газа. Колебания рН могут стать источником больших проблем, особенно в пруду.

Так, днем, в результате ассимиляции (усвоения растениями питательных веществ) количество СО2 уменьшается, а в темное время суток — увеличивается в результате дыхания как животных, так и растений. Таким образом, утром значение рН может быть около 7,0, а вечером — 10,0.

Важно понимать, что кислотность (рН) зависит от освещения, развития водорослей и способа поставки кислорода, а не от свойств воды.

Оксидатор против удушья рыб

Оксидатор наиболее эффективен в чистой воде аквариума, в этом случае весь кислород полностью используется для дыхания рыб и уничтожения паразитов. Чем выше температура воды в аквариуме, тем чаще дышит рыба и тем больше ее потребность в кислороде. Если установить оксидатор, соответствующий объему аквариума, это позволит содержать большее количество рыб.

Наличие оксидатора не заменяет компрессор, но дополняет и страхует его действие при внезапных перебоях с электричеством или при колебаниях температуры.Особенно пригодится оксидатор в аквариумах с золотыми рыбками, так как они вырастают до довольно крупных размеров и испытывают большую потребность в кислороде.

Желательно установить оксидатор также при заселении новых рыб или при подозрении на наличие в аквариуме жаберных паразитов.

В аквариумах с проблемными рыбами (дискусы, скаты, танганьикские цихлиды и пр.) и в морских аквариумах лучше установить оксидатор в систему внешних фильтров, что обеспечит более равномерное перемешивание обогащенной кислородом воды.

При признаках удушья у рыб нужно срочно установить оксидатор и одновременно заменить часть воды свежей отстоенной.

Для ликвидации асфиксии в транспортировочных емкостях или в пакетах можно применять оксидаторы FT или FTc, при одновременной замене воды и добавлении жидкого катализатора из набора оксидаторов FT или FTc.

Из литра 30% раствора перекиси водорода суммарно выделится 156 грамм чистого кислорода. Этого количества хватит для однократного полного насыщения 20000 литров воды. При температуре 25 градусов и одном большом катализаторе из литра раствора перекиси водорода в сутки будет получено: при 30 % растворе — 5000 мг; при 6% — 270 мг и при 3 % — 65 мг кислорода.

Оксидатор для лечения и профилактики инфекций

Инфекции, предупреждаемые активным кислородом оксидатора:•    Ихтиофтириоз (точечная болезнь)•    Вирулез•    Сапролегниоз (грибковая гниль)•    Асфиксия (удушье)Инфекции, ослабляемые активным кислородом оксидатора:•    Кожные и жаберные сосальщики•    Гельминозы (внутренние сосальщики)•    Воспаление плавательного пузыря•    Бактериальные катаракты•    Аэромоноз (краснуха карповых)•    Язвы на покровах тела рыб, травмы и поражения плавников•    Бактериальная несовместимость рыб

•    Оодиниоз

Оксидатор своими руками

Всем привет.Ну,что раскрою тайну для чего мне нужны были глиняные горшочки из под аквариумных растений……А вот для чего,для изготовления оксидатора в домашних условиях.С подвигло меня,до этого купленный Sochting Оксидатор Mini в ZooTown.ru,тынц.

Далее изучив данный прибор,решил изготовить из подручных средств такой же подобный.Для начало достал ёмкость,которую нашёл у себя в запасах.После этого,нашёл пробку для её закупоривания….Пробка оказалась великовата и для этого я использовал 5мл шприц чтобы пробка плотно закрывалась и не болталась.Пробка заходила плотно,как и должно было быть.Осталось дело за малым,в инете много было советов использовать вместо катализаторов внутренний элемент от обычных батареек,но это мне не помогло,как я не старался,пришлось покупать в ZooTown.ru,оригинальные катализаторы,тынц.Далее осталось за малым,как его установить в аквариум,нашёл два способа,один такой, как на фото….(крепление к стеклу на присоске)Либо другим способом,решил сперва попробовать с помощью пробки от полтарушки,но после того как в ёмкости заканчивался раствор перекиси водорода,то он всплывал,как поплавок(оказывается серое кольцо(пробка)в оксидаторе используется, как утяжелитель или грузило и всё,больше от него толку нету).
И до меня дошло,для этого хорошо подойдут горшочки от аквариумных растений,долго их искал в городе,даже нашёл в магазине «МА»,но цена меня сильно удивила  50руб/штука,я в шоке…Но всё же я нашёл их по адекватной цене и купил их…..Чтобы самодельный оксидатор хорошо держался внутри горшочка я плоскогубцами края шприца слегка разжевал.Вот смотрите по фото:Ну,что вот и всё оксидатор готов к работе в аквариуме.Смотрите….А вместо их раствора перекиси водорода,я использую обычную аптечную 3%перекись водорода.Всем спасибо за внимание..

Оксигенераторы своими руками — Портал по безопасности

Оксигенераторы своими руками

Удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне.

Более всего умельцев – энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества).

Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения установки для отопления частного дома, заправки авто и в качестве сварочного аппарата.

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

  1. Горение водорода – процесс экологически чистый, никаких вредных веществ не выделяется.
  2. Благодаря химической активности газ в свободном виде на Земле не встречается. Зато в составе воды его запасы неиссякаемы.
  3. Элемент добывается в промышленном производстве химическим способом, например, в процессе газификации (пиролиза) каменного угля. Зачастую является побочным продуктом.
  4. Другой способ получения газообразного водорода – электролиз воды в присутствии катализаторов – платины и прочих дорогих сплавов.
  5. Простая смесь газов hydrogen + oxygen (кислород) взрывается от малейшей искры, моментально высвобождая большое количество энергии.

Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.

Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2H2 + O2 → 2H2O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2H2O → 2H2 + O2 — Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Создание опытного образца

Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

Из чего состоит примитивный электролизер:

  • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
  • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
  • второй резервуар играет роль водяного затвора;
  • трубки для отвода газа HHO.

Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

Принцип работы электролизера следующий:

  1. К двум электродам, погруженным в воду, подводится напряжение, желательно от регулируемого источника. Для улучшения реакции в емкость добавляется немного щелочи либо кислоты (в домашних условиях – обычной соли).
  2. В результате реакции электролиза со стороны катода, подключенного к «минусовой» клемме, станет выделяться водород, а возле анода – кислород.
  3. Смешиваясь, оба газа по трубке поступают в гидрозатвор, выполняющий 2 функции: отделение водяного пара и недопущение вспышки в реакторе.
  4. Из второй емкости гремучий газ ННО подается на горелку, где сжигается с образованием воды.

Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:

  1. Плоские деревянные палочки скрутите саморезами, располагая их концами в разные стороны. Спаяйте головки шурупов между собой и подсоедините провода – получите будущие электроды.
  2. Проделайте отверстие в крышке, просуньте туда разрезанный корпус капельницы и провода, затем герметизируйте с 2 сторон клеевым пистолетом.
  3. Поместите электроды в бутылку и завинтите крышку.
  4. Во второй крышке просверлите 2 отверстия, вставьте трубки капельниц и накрутите на бутылку, заполненную обычной водой.

Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

О водородной ячейке мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.

Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.

Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер).

В целях безопасности система снабжена датчиками критического давления и уровня воды.

По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.

Принципиальная схема включения электролизера

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10—14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.

Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.

Оксигенераторы своими руками — Справочник металлиста

Оксигенераторы своими руками

Доступность растворенного кислорода (РК) обычно является главным фактором, который ограничивает возможность увеличения плотности посадки в замкнутой системе водоснабжения. Измерение его концентрации проводится различными методами (подробнее).

Использование только аэрации для обеспечения кислорода позволяет поддерживать плотность посадки 40 кг/м3. Однако внесение чистого кислорода с помощью оборудования эффективной подачи газа повышает плотность посадки до 120 кг/м3.

В расчет берется разница концентрации растворенного кислорода на входе емкости культивирования (10 мг/л при аэрации или 18 мг/л подача чистого кислорода) и на выходе системы.

Например, при концентрации растворенного кислорода на выходе 6 мг/л для дыхания рыбы доступно лишь 4 мг/л при аэрации (10 мг/л — 6 мг/л) и 12 мг/л при подачи чистого кислорода (18 мг/л — 6 мг/л). Таким образом, плотность посадки может возрасти с 40 кг/м3 до 120 кг/м3.

Интересно, что концентрация побочных продуктов (твердого осадка) при возрастании плотности зарыбления также возрастает. Поэтому необходимо более эффективное их удаление, например, использование микросетчатого фильтра.

Запросы водных организмов в отношении концентрации кислорода зависят от многочисленных факторов, включающих плотность посадки, количества вносимого корма, уровня стресса, температуры воды и ряда других.

Холодноводные виды нуждаются в 0,3-0,5 кг кислорода на 1 кг корма. При высоких температурах и наличии кислородного запроса со стороны биофильтра и других бактерий потребность в кислороде возрастает до 1 кг кислорода на 1 кг корма.

Минимальные значения растворенного кислорода зависят также от потребностей конкретного вида рыб и условий выращивания. Тилапия может выживать при таких уровнях растворенного кислорода, при которых радужная форель или лосось погибают в течение считанных минут.

Стоит отметить, что концентрация O2 менее 4-6 мг/л снижает ростовые показатели.

Плотность посадки можно повысить путем повышения количеств вносимого корма, когда решена проблема с доступностью кислорода и снижены такие лимитирующие факторы, как общий уровень азотсодержащих продуктов, CO2, объем емкости культивирования. Повышение плотности зарыбления должно быть экономически оправдано.

Таким образом, концентрация растворенного кислорода является одним из наиболее существенных лимитирующих факторов, определяющих количество выращиваемой рыбы.

Тем не менее, интенсификация снабжения воды чистым кислородом, равно как и аэрация, ограничена, потому что на каждые 10 мг/л потребляемого O2 образуется 1,0-1,4 мг/л TAN (общий уровень азота), 13-14 мг/л CO2 и 10-20 мг/л твердых частиц в осадке. При потреблении кислорода системой более 10-22 мг/л (в зависимости от щелочности, pH, температуры, видов рыб) лимитирующим фактором становится концентрация растворенного углекислого газа (без снятия и контроля pH).

Аэрация атмосферным воздухом (слева) и оксигенация кислородной смесью (справа).

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.