Радиатор для светодиода 10w своими руками

Радиаторы для светодиодов: расчет площади, выбор материала, изготовление своими руками

Радиатор для светодиода 10w своими руками

Заявленный срок службы светодиодов исчисляется десятками тысяч часов. Чтобы достичь столь высокого показателя, не ухудшив при этом оптические характеристики, мощные светодиоды необходимо использовать в паре с радиатором. Данная статья позволит читателю найти ответы на вопросы, связанные с расчётом и выбором радиатора, их модификациями и факторами, влияющими на отвод тепла.

А зачем он нужен?

Наравне с другими полупроводниковыми приборами светодиод не является идеальным элементом со 100% коэффициентом полезного действия (КПД). Большая часть потребляемой им энергии рассеивается в тепло.

Точное значение КПД зависит от типа излучающего диода и технологии его изготовления.

Эффективность слаботочных светодиодов составляет 10-15%, а у современных белых мощностью более 1 Вт её значение достигает 30%, а значит, остальные 70% расходуются в тепло.

Каким бы ни был светодиод, для стабильной и продолжительной работы ему необходим постоянный отвод тепловой энергии от кристалла, то есть радиатор. В слаботочных led функцию радиатора выполняют выводы (анод и катод). Например, в SMD 2835 вывод анода занимает почти половину нижней части элемента.

В мощных светодиодах абсолютная величина рассеиваемой мощности на несколько порядков больше. Поэтому нормально функционировать без дополнительного теплоотвода они не могут.

Постоянный перегрев светоизлучающего кристалла в разы снижает срок службы полупроводникового прибора, способствует плавной потере яркости со смещением рабочей длины волны.

Виды

Конструктивно все радиаторы можно разделить на три большие группы: пластинчатые, стержневые и ребристые. Во всех случаях основание может иметь форму круга, квадрата или прямоугольника. Толщина основания имеет принципиальное значение при выборе, так как именно этот участок несёт ответственность за приём и равномерное распределение тепла по всей поверхности радиатора.

На форм-фактор радиатора оказывает влияние будущий режим работы:

  • с естественной вентиляцией;
  • с принудительной вентиляцией.

Радиатор охлаждения для светодиодов, который будет использоваться без вентилятора, должен иметь расстояние между рёбрами не менее 4 мм. В противном случае естественной конвекции не хватит для успешного отвода тепла. Ярким примером служат системы охлаждения компьютерных процессоров, где за счёт мощного вентилятора расстояние между рёбрами уменьшено до 1 мм.

При проектировании светодиодных светильников большое значение уделяется их внешнему виду, что оказывает огромное влияние на форму теплоотвода.

Например, система отвода тепловой энергии светодиодной лампы не должна выходить за рамки стандартной грушевидной формы.

Этот факт вынуждает разработчиков прибегать к различным ухищрениям: использовать печатные платы с алюминиевой основой, соединяя их с корпусом-радиатором при помощьи термоклея.

Материалы изготовления радиаторов

В настоящее время охлаждение мощных светодиодов производят преимущественно на радиаторах из алюминия. Такой выбор обусловлен лёгкостью, низкой стоимостью, податливостью в обработке и хорошими теплопроводящими свойствами этого металла.

Монтаж медного радиатора для светодиода оправдан в светильнике, где первостепенное значение имеют размеры, так как медь в два раза лучше рассеивает тепло, чем алюминий.

Свойства материалов, которые наиболее часто используются для охлаждения мощных светодиодов, рассмотрим более детально.

Алюминиевые

Коэффициент теплопроводности алюминия находится в пределах 202–236 Вт/м*К и зависит от чистоты сплава. По этому показателю он в 2,5 раза превосходит железо и латунь. Кроме этого, алюминий поддаётся разным видам механической обработки. Для увеличения теплоотводящих свойств алюминиевый радиатор анодируют (покрывают в чёрный цвет).

Медные

Теплопроводность меди составляет 401 Вт/м*К, уступая среди других металлов лишь серебру. Тем не менее медные радиаторы встречаются намного реже алюминиевых, что обусловлено наличием ряда недостатков:

  • высокая стоимость меди;
  • сложная механическая обработка;
  • большая масса.

Применение медной охлаждающей конструкции ведёт к увеличению себестоимости светильника, что недопустимо в условиях жёсткой конкуренции.

Керамические

Новым решением в создании высокоэффективных теплоотводов стала алюмонитридная керамика, теплопроводность которой составляет 170–230 Вт/м*К. Этот материал отличается низкой шероховатостью и высокими диэлектрическими свойствами.

С применением термопластика

Несмотря на то что свойства теплопроводных пластмасс (3–40 Вт/м*К) хуже, чем у алюминия, их главными преимуществами являются низкая себестоимость и лёгкость. Многие производители светодиодных ламп используют термопластик для изготовления корпуса. Однако термопластик проигрывает конкуренцию металлическим радиаторам в проектировании светодиодных светильников мощностью более 10 Вт.

Особенности охлаждения мощных светодиодов

Как указывалось ранее, обеспечить эффективный отвод тепла от светодиода можно при помощи организации пассивного или активного охлаждения. Светодиоды мощностью потребления до 10 вт целесообразно устанавливать на алюминиевые (медные) радиаторы, так как их массогабаритные показатели будут иметь приемлемые значения.

Применение пассивного охлаждения для светодиодных матриц мощностью 50 Вт и более становится затруднительным; размеры радиатора составят десятки сантиметров, а масса возрастёт до 200-500 грамм.

В этом случае стоит задуматься о применении компактного радиатора вместе с небольшим вентилятором. Этот тандем позволит снизить массу и размеры системы охлаждения, но создаст дополнительные трудности.

Вентилятор необходимо обеспечить соответствующим напряжением питания, а также позаботиться о защитном отключении светодиодного светильника в случае поломки кулера.

Существует ещё один способ охлаждения мощных светодиодных матриц. Он состоит в применении готового модуля SynJet, который внешне напоминает кулер для видеокарты средней производительности. Модуль SynJet отличается высокой производительностью, тепловым сопротивлением не больше 2 °C/Вт и массой до 150 г.

Его точные размеры и вес зависят от конкретной модели. К недостаткам стоит отнести необходимость в источнике питания и высокую стоимость.

В результате получается, что светодиодную матрицу в 50 Вт нужно крепить либо на громоздкий, но дешёвый радиатор, либо на маленький радиатор с вентилятором, блоком питания и системой защиты.

Каким бы ни был радиатор, он способен обеспечить хороший, но не самый лучший тепловой контакт с подложкой светодиода. Для снижения теплового сопротивления на контактируемую поверхность наносят теплопроводящую пасту.

Эффективность её воздействия доказана повсеместным применением в системах охлаждения компьютерных процессоров. Качественная термопаста устойчива к затвердеванию и обладает низкой вязкостью.

При нанесении на радиатор (подложку) достаточно одного тонкого ровного слоя на всей площади соприкосновения. После прижима и фиксации толщина слоя составит около 0,1 мм.

Расчет площади радиатора

Существуют два метода расчёта радиатора для светодиода:

  • проектный, суть которого состоит в определении геометрических размеров конструкции при заданном температурном режиме;
  • поверочный, который предполагает действовать в обратной последовательности, то есть при известных параметрах радиатора можно рассчитать максимальное количество теплоты, которую он способен эффективно рассеивать.

Применение того или иного варианта зависит от имеющихся исходных данных. В любом случае точный расчёт – это сложная математическая задача с множеством параметров.

Кроме умения пользоваться справочной литературой, брать необходимые данные из графиков и подставлять их в соответствующие формулы, следует учитывать конфигурацию стержней или рёбер радиатора, их направленность, а также влияние внешних факторов.

Также стоит учитывать и качество самих светодиодов. Зачастую в светодиодах китайского производства реальные характеристики расходятся с заявленными.

Точный расчёт

Прежде чем перейти к формулам и расчётам, необходимо ознакомиться с основными терминами в области распространения тепловой энергии. Теплопроводность представляет собой процесс передачи тепловой энергии от более нагретого физического тела к менее нагретому.

Количественно теплопроводность выражается в виде коэффициента, который показывает, сколько теплоты способен передать материал через единицу площади при изменении температуры на 1°K. В светодиодных светильниках все части, задействованные в обмене энергии, должны обладать высокой теплопроводностью.

В частности это касается передачи энергии от кристалла к корпусу, а затем к радиатору и воздуху.

Конвекция – тоже процесс передачи тепла, который происходит за счёт движения молекул жидкостей и газов. Применительно к светодиодным светильникам принято рассматривать обмен энергией между радиатором и воздухом. Это может быть естественная конвекция, происходящая за счет естественного перемещения воздушного потока, или принудительная, организованная за счёт установки вентилятора.

В начале статьи указывалось, что около 70% потребляемой светодиодом мощности расходуется в тепло. Чтобы рассчитать радиатор для светодиодов, необходимо знать точное количество рассеиваемой энергии. Для этого воспользуемся формулой:

PТ=k*UПР*IПР, где:

PТ – мощность, выделяемая в виде тепла, Вт;k – коэффициент, учитывающий процент энергии, переходящей в тепло. Это величина для мощных светодиодов принимается равной 0,7-0,8;

UПР – прямое падение напряжения на светодиоде при протекании номинального тока, В;

IПР – номинальный ток, А.

Пришло время посчитать количество препятствий, расположенных на пути прохождения теплового потока от кристалла к воздуху. Каждое препятствие представляет собой тепловое сопротивление (termal resistance), обозначаемое символом (Rθ, градус/Вт). Для наглядности всю систему охлаждения представляют в виде схемы замещения из последовательно-параллельного включения тепловых сопротивлений

Rθja= Rθjc+ Rθcs+ Rθsa, где:

Rθjc – тепловое сопротивление p-n-переход-корпус (junction-case);
Rθcs – тепловое сопротивление корпус-радиатор (case-surfase radiator);
Rθsa– тепловое сопротивление радиатор-воздух (surfase radiator-air).

Если предполагается устанавливать светодиод на печатную плату или использовать термопасту, то также нужно учесть их тепловые сопротивления. На практике значение Rθsa можно определить двумя способами.

Рассчитать по формуле Rθja=(Tj-Ta)/Pт, где:

Rθja – сопротивление p-n-переход-воздух;
Tj – максимальная температура p-n-перехода (справочный параметр), °C;
Ta – температура воздуха вблизи радиатора, °C.

Rθsa= Rθja-Rθjc-Rθcs, где Rθjc и Rθcs – справочные параметры.

Найти из графика «зависимость максимального теплового сопротивления от прямого тока».

По известному Rθsa выбирают стандартный радиатор. При этом паспортное значение теплового сопротивления должно быть немного меньше расчетного.

Приблизительная формула

Многие радиолюбители привыкли использовать в своих самоделках радиаторы, оставшиеся от старой электронной аппаратуры. При этом они не желают углубляться в сложные вычисления и покупать дорогие новинки импортного производства. Как правило, их интересует один только вопрос: «Какую мощность может рассеять имеющийся в наличии алюминиевый радиатор для светодиодов?»

Предлагаем воспользоваться простой эмпирической формулой, позволяющей получить приемлемый результат расчёта: Rθsa=50/√S, где S – площадь поверхности радиатора в см2.

Подставляя в данную формулу известное значение суммарной площади теплоотвода с учетом поверхности рёбер (стержней) и боковых граней, получаем его тепловое сопротивление.

Допустимую мощность рассеивания находим из формулы: Pт=(Tj-Ta)/Rθja.

Приведенный расчёт не учитывает много нюансов, влияющих на качество работы всей охлаждающей системы (направленность радиатора, температурные характеристики светодиода и пр.). Поэтому полученный результат рекомендуется умножать на коэффициент запаса – 0,7.

Радиатор для светодиода своими руками

Сделать алюминиевый радиатор для светодиодов 1, 3 или 10 Вт своими руками несложно. Сначала рассмотрим простую конструкцию, на изготовление которой потребуется около полчаса времени и круглая пластина толщиною 1-3 мм.

По окружности через каждые 5 мм делают надрезы к центру, а получившиеся сектора слегка загибают, чтобы готовая конструкция напоминала крыльчатку. Для крепления радиатора к корпусу в нескольких секторах делают отверстия. Немного сложнее сделать самодельный радиатор для 10 ваттного светодиода.

Для этого понадобиться 1 метр алюминиевой полосы шириной 20 мм и толщиной 2 мм. Сначала полосу распиливают ножовкой на 8 равных частей, которые затем складывают стопкой, просверливают насквозь и стягивают болтом с гайкой. Одну из боковых граней шлифуют под крепление светодиодной матрицы.

С помощью стамески полосы разгибают в разные стороны. В местах крепления светодиодного модуля сверлят отверстия. На отшлифованную поверхность наносят термоклей, сверху прикладывают матрицу, фиксируя её саморезами.

Дешевые теплоотводчики для любительских самооделок

Специально для радиолюбителей, которые любят экспериментировать с разными материалами для отвода тепла и при этом не хотят тратить деньги на дорогостоящие готовые изделия, дадим несколько рекомендаций по поиску и изготовлению радиаторов своими руками. Для охлаждения светодиодных лент и линеек прекрасно подойдёт мебельный профиль из алюминия. Это могут быть направляющие для шкафов-купе или кухонная фурнитура, остатки которой можно купить по себестоимости в мебельном магазине.

Для охлаждения светодиодных матриц 3-10 Вт подойдут радиаторы из советских магнитофонов и усилителей, которых более чем достаточно на радиорынках каждого города. Также можно использовать запчасти от старой оргтехники.

Самодельное охлаждение для 50 Вт светодиода можно сделать из радиатора от неисправной бензопилы, газонокосилки, распилив его на несколько частей. Купить такие запчасти можно в ремонтных мастерских по цене лома. Конечно, про эстетические качества светодиодного светильника в этом случае можно забыть.

Радиатор для светодиодов: алюминиевый термоклей для ленты своими руками, термопаста-теплоотвод, профиль для мощного охлаждения

Радиатор для светодиода 10w своими руками

Устройство и принципы функционирования радиатора для светодиодов. Правила выбора материала и площади детали. Делаем радиатор своими руками легко и быстро.

Распространенное мнение, что светодиоды не нагреваются – заблуждение. Возникло оно потому, что маломощные светодиоды на ощупь не горячие. Все дело в то, что они оснащены отводчиками тепла – радиаторами.

Принцип действия теплоотвода

Главным потребителем тепла, выделяемого светодиодом, является окружающий воздух. Его холодные частицы подходят к нагретой поверхности теплообменника (радиатора), нагреваются и устремляются вверх, освобождая место новым холодным массам.

При столкновении с другими молекулами происходит распределение (рассеивание) тепла. Чем больше площадь поверхности радиатора, тем интенсивнее он передаст тепло от светодиода воздуху.

Подробнее о принципах работы светодиодов читайте здесь.

Количество поглощенного воздушной массой тепла с единицы площади не зависит от материала радиатора: эффективность естественного «теплового насоса» ограничено его физическими свойствами.

Материалы для изготовления

Радиаторы для охлаждения светодиодов различаются по конструкции и материалу.

Окружающий воздух может принять не более 5-10 Вт с единичной поверхности. При выборе материала для изготовления радиатора следует принять во внимание выполнение следующего условия: теплопроводность его должна быть не менее 5-10 Вт. Материалы с меньшим параметром не смогут обеспечить передачу всего тепла, которое может принять воздух.

Теплопроводность выше 10 Вт будет технически избыточной, что повлечет за собой неоправданные финансовые затраты без увеличения эффективности радиатора.

Для изготовления радиаторов традиционно используют алюминий, медь или керамику. В последнее время появились изделия, выполненные из теплорассеивающих пластмасс.

Рекомендуем Вам также более подробно прочитать про импульсный блок питания своими руками.

Пластмассы теплорассеивающие

Все чаще появляется информация о перспективах замены металла и керамики на терморассеивающую пластмассу. Интерес к этому материалу понятен: стоит пластмасса намного дешевле алюминия, а ее технологичность намного выше. Однако теплопроводность обычной пластмассы не превышает 0,1-0,2 Вт/м.К. Добиться приемлемой теплопроводности пластмассы удается за счет применения различных наполнителей.

При замене алюминиевого радиатора на пластмассовый (равной величины) температура в зоне подвода температур возрастает всего на 4-5%. Учитывая, что теплопроводность теплорассеивающей пластмассы намного меньше алюминия (8 Вт/м.К против 220-180 Вт/м.К), можно сделать вывод: пластический материал вполне конкурентоспособен.

Лампочка с радиатором из термопластика

Таблица – Сравнение теплопроводности различных материалов

МатериалТеплопроводность, Вт/м.КАлюминий120-240Медь401Керамика15-40; 100-200Теплорассеивающие пластмассы1 – 40Термопаста0,1 – 10

Конструктивные особенности

Конструктивные радиаторы делятся на две группы:

Первый тип, в основном, применяется для естественного охлаждения светодиодов, второй – для принудительного. При равных габаритных размерах пассивный игольчатый радиатор на 70 процентов эффективнее ребристого.

Радиаторы игольчатого типа для мощных и смд светодиодов

Но это не значит, что пластинчатые (ребристые) радиаторы годятся только для работы в паре с вентилятором. В зависимости от геометрических размеров, они могут применяться и для пассивного охлаждения.

LED-лампа с ребристым радиатором

Обратите внимание на расстояние между пластинами (или иглами): если оно составляет 4 мм – изделие предназначено для естественного отвода тепла, если зазор между элементами радиатора всего 2 мм – его необходимо комплектовать вентилятором.

Оба типа радиаторов в поперечном сечении могут быть квадратными, прямоугольными или круглыми.

Рекомендуем Вам также ознакомиться с электромагнитным устройством – дроссель для ламп.

Сделать своими руками

Радиолюбители редко берутся за изготовление радиаторов, поскольку этот элемент – вещь ответственная, напрямую влияющая на долговечность светодиода. Но в жизни бывают разные ситуации, когда приходится мастерить теплоотводчик из подручных средств.

Рекомендуем Вам также более подробно прочитать про  изготовление диммера своими руками.

Вариант 1

Самая простая конструкция самодельного радиатора – круг, вырезанный из листа алюминия с выполненными на нем надрезами. Полученные сектора немного отгибаются (получается нечто, похожее на крыльчатку вентилятора).

По осям радиатора отгибаются 4 усика для крепления конструкции к корпусу лампы. Светодиод можно закрепить через термопасту саморезами.

Вариант 1 – самодельный радиатор из алюминия

Вариант 2

Радиатор для светодиода можно изготовить своими руками из куска трубы прямоугольного сечения и алюминиевого профиля.

Необходимые материалы:

  • труба 30х15х1,5;
  • пресс-шайба диаметром 16 мм;
  • термоклей;
  • термопаста КТП 8;
  • профиль 265 (Ш-образный);
  • саморезы.

В трубе для улучшения конвекции сверлятся три отверстия диаметром 8 мм, а в профиле – отверстия диаметром 3,8 мм – для его крепления саморезами.

Светодиоды приклеиваются к трубе – основанию радиатора – при помощи термоклея.

В местах соединения деталей радиатора наносится слой термопасты КТП 8. Затем производится сборка конструкции с помощью саморезов с пресс шайбой.

Способы крепления светодиодов к радиатору

Светодиоды прикрепляют к радиаторам двумя способами:

  • механическим;
  • приклеиванием.

Приклеить светодиод можно на термоклей. Для этого на металлическую поверхность наносится капелька клеящей массы, затем на нее садится светодиод.

Для получения прочного соединения светодиод необходимо на несколько часов придавить небольшим грузом – до полого высыхания клея.

Однако большинство радиолюбителей предпочитают механическое крепление светодиодов. Сейчас выпускаются специальные панели, с помощью которых можно быстро и надежно смонтировать светодиод.

В некоторых моделях предусмотрены зажимы для вторичной оптики. Монтаж выполняется просто: на радиатор устанавливается светодиод, на него – панелька, которая крепится к основанию саморезами.

Но не только радиаторы для светодиода можно изготовить самостоятельно. Любителям заниматься растениями рекомендуем ознакомиться со светодиодной лампой для рассады своими руками.

Качественное охлаждение светодиода является залогом долговечности светодиода. Поэтому к подбору радиатора следует подходить со всей серьезностью. Лучше всего использовать готовые теплообменники: они продаются в магазинах радиотоваров. Стоят радиаторы недешево, зато легко монтируются и светодиод защищает от избытка тепла надежнее.

Расчет и изготовление радиатора для светодиодов

Радиатор для светодиода 10w своими руками

Светодиоды считаются одним из наиболее эффективных источников света, их световой поток доходит до фантастических значений, порядка 100 Лм/Вт. Люминесцентные лампы выдают в два раза меньше, а именно 50-70 Лм/Вт. Однако для долгой работы светодиода нужно выдерживать их тепловые режимы. Для этого применяются фирменные или самодельные радиаторы для светодиодов.

Зачем диодам нужно охлаждение?

Несмотря на высокие показатели светоотдачи светодиоды излучают света примерно на треть потребляемой мощности, а остальное выделяется в тепло. Если диод перегревается структура его кристалла нарушается, начинает деградировать, световой поток снижается, а степень нагрева лавинообразно увеличивается.

Причины перегрева светодиодов:

  • Слишком большой ток;
  • плохая стабилизация питающего напряжения;
  • плохое охлаждение.

Первые две причины решаются применением качественного источника питания для светодиодов. Такие источники часто называют драйвер для светодиода. Их особенность заключается не в стабилизации напряжения, а именно в стабилизации выходного тока.

Дело в том, что при перегреве сопротивление светодиода снижается и ток, протекающий через него, возрастает. Если в качестве блока питания использовать стабилизатор напряжения – процесс получится лавинообразным: больше нагрев – больше ток, а больший ток – это больший нагрев и так по кругу.

Стабилизируя ток, вы отчасти стабилизируете и температуру кристалла. Третья причина – это плохое охлаждение для светодиодов. Рассмотрим этот вопрос подробнее.

Решаем проблему охлаждения

Маломощные светодиоды, например: 3528, 5050 и им подобные отдают тепло за счёт своих контактов, да и мощность у таких экземпляров гораздо меньше. Когда мощность прибора возрастает, появляется вопрос отвода лишнего тепла. Для этого применяют системы пассивного или активного охлаждения.

Пассивное охлаждение – это обычный радиатор, выполненный из меди или алюминия. О преимуществах материалов для охлаждения ходят споры. Достоинством такого типа охлаждение является – отсутствие шума и практически полное отсутствие необходимости его обслуживания.

Установка LED с пассивным охлаждением в точечный светильник

Активная система охлаждения – это способ охлаждения с применением внешней силы для улучшения отвода тепла.

В качестве простейшей системы можно рассмотреть связку радиатор + кулер. Преимуществом является то, что такая система может быть значительно компактнее чем пассивная, до 10 раз.

Недостатком — шум от кулера и необходимость его смазки.

Как подобрать радиатор?

Расчет радиатора для светодиода процесс не совсем простой, тем более для начинающего. Для его выполнения нужно знать тепловое сопротивление кристалла, а также перехода кристалл-подложка, подложка-радиатор, радиатор-воздух. Чтобы упростить решение многие пользуются соотношением 20-30 см2/Вт.

Это значит, что на каждый ватт LED света нужно использовать радиатор площадью порядка 30 см2.

Естественно, такое решение не является уникальным. Если ваша осветительная конструкция будет использоваться в подвальном прохладном помещении можно взять меньшую площадь, но при этом убедитесь, что температура светодиода в пределах нормы.

Предыдущие поколения LED комфортно чувствовали себя при температуре кристалла 50-70 градусов, новые светодиоды могут переноситьтемпературу до 100 градусов. Проще всего определить – прикоснуться рукой, если рука едва терпит – всё в порядке, а если кристалл может вас обжечь – принимайте решение для улучшения условий его работы.

Считаем площадь

Допустим мы имеем светильник мощностью 3Вт. Площадь радиатора для светодиода 3Вт, согласно описанному выше правилу будет равна 70-100см2. С первого взгляда может показаться большой.

Но рассмотрим расчет площади радиатора для светодиода. Для плоского пластинчатого радиатора площадь считается:

a * b * 2 = S

Где a, b – длины сторон пластины, S – полная площадь радиатора.

Откуда взялся коэффициент 2? Дело в том, что у такого радиатора две стороны и они равносильно отдают тепло окружающей среде, поэтому полная полезная площадь радиатора равна площади каждой из его сторон. Т.е. в нашем случае нужна пластина с размерами сторон 5*10см.

Для ребристого радиатора полная площадь равна – площади основания и площадям каждого из рёбер.

Охлаждение своими руками

Простейшим примером радиатора будет «солнышко», вырезанное из жести или листа алюминия. Такой радиатор может охладить 1-3Вт светодиодов. Скрутив два таких листа между собой через термопасту, можно увеличить площадь теплоотдачи.

Это банальный радиатор из подручных средств, он получается довольно тонким и использовать его для более серьёзных светильников нельзя.

Сделать своими руками радиатор для светодиода на 10W таким образом будет невозможно. Поэтому можно применить для таких мощных источников света радиатор от центрального процессора компьютера.

Если если оставить кулер, активное охлаждение светодиодов позволит использовать и более мощные LED. Такое решение создаст дополнительный шум от вентилятора и потребует дополнительного питания, плюс периодическое ТО кулера.

Площадь радиатора для 10Вт светодиода будет довольно большой – порядка 300см2. Хорошим решением будет использование готовых алюминиевых изделий. В строительном или хозяйственном магазине вы можете приобрести алюминиевый профиль и использовать его для охлаждения мощных светодиодов.

Сделав сборку нужной площади из таких профилей, вы можете получить неплохое охлождение, не забудьте все стыки промазать хотя бы тонким слоем термопасты. Стоит сказать, что есть специальный профиль для охлаждения, который выпускается промышленно самых разнообразных видов.

Если у вас нет возможности сделать радиатор охлаждения светодиодов своими руками вы можете поискать подходящие экземпляры в старой электронной аппаратуре, даже в компьютере.

На материнской плате расположены несколько. Они нужны для охлаждения чипсетов и силовых ключей цепей питания. Отличный пример такого решения изображен на фото ниже. Их площадь обычно от 20 до 60см2.

Что позволяет охлаждать светодиод мощностью 1-3 Вт.

Еще один интересный вариант изготовления радиатора из листов алюминия. Такой метод позволит набрать практически любую необходимую площадь охлаждения. Смотрим видео:

Как закрепить светодиод

Существует два основных способа крепления, рассмотрим оба из них.

Первый способ – это механический. Он заключается в том, чтобы прикрутить светодиод саморезами или другим крепежом к радиатору, для этого нужна специальная подложка типа «звезда» (см. star). К ней припаивается диод, предварительно смазанный термопастой.

На «пузе» у светодиода есть специальный контактный пятачок диаметром как сигарета типа slim. После чего к этой подложке припаиваются питающие провода, и она прикручивается к радиатору. Некоторые светодиоды поступают в продажу уже закреплённые на переходной пластине, как на фото.

Второй способ – это клеевой. Он пригоден как и для монтажа через пластину, так и без неё. Но метал к металлу крепить не всегда получается, чем приклеить светодиод к радиатору? Для этого нужно приобрести специальный термопроводящий клей. Он может встречаться как в хозяйственной, так и в магазине радиодеталей.

Выглядит результат такого крепления следующим образом.

Выводы

Как вы могли убедится радиатор для светодиода можно найти как в магазине, так и порывшись в своих старых приборах, или просто в залежах всяких мелочей. Не обязательно использовать специальное охлаждение.

Площадь радиатора зависит от ряда условий, таких как влажность, температура окружающего воздуха и материал радиатора, но при бытовом решении ими пренебрегают.

Всегда уделяйте особое внимание проверке тепловых режимов ваших устройств. Таким образом вы обеспечите их надёжность и долговечность. Можно определять температуру рукой, но лучше приобретите мультиметр с возможностью её измерения.

Оцените, пожалуйста, статью. Мы старались:) (3 4,67 из 5)
Загрузка…

Изготавливаем своими руками радиатор для светодиодов

Радиатор для светодиода 10w своими руками

Светодиоды появились всего несколько лет назад. Но они уже успели закрепить за собой лидерские позиции на рынке осветительной продукции.

Они могут применяться не только в системах освещения, но и в различных поделках или любительских схемах. Когда имеешь дело с led, нужно обязательно позаботиться о вариантах охлаждения.

Одним из способов охлаждения светодиодов является установка радиатора.

Радиаторы для охлаждения светодиодов

Наша статья раскроет вам все тайны, как можно правильно и при этом своими руками собрать устройство для охлаждения.

Зачем необходим теплоотводник

Прежде чем приступить к самостоятельной сборке теплоотводника для светодиодов, необходимо знать особенности самого источника света.
Светодиоды представляют собой полупроводники, которые имеют две ножки (“+” и “-”) т.е. они обладают полярностью.

Светодиоды

Чтобы правильно изготовить для них радиатор, необходимо провести определенный расчет. В первую очередь этот расчет должен включать измерения напряжения, а также силу тока. Кроме этого необходимо помнить, что любое электроемкое устройство, включая светодиоды, отличает тенденцией к нагреванию.

Поэтому здесь и нужна система охлаждения.
Проводя расчет, помните — лишь 1/3 от указанной мощности источника света будет преобразоваться в световой поток (например, 3-3,5 из 10w). Поэтому основная часть составит тепловые потери. Для того чтобы минимизировать теплопотери и используют радиаторы.

Обратите внимание! Перегревание светодиода приводит к уменьшению его срока эксплуатации. Поэтому использование радиатора позволяет еще и продлить «жизнь» источнику света.

Поэтому схемы светодиодов иметь комплекс охлаждения всех основных элементов.
Сегодня для охлаждения элементов электросхемы, в которую входят светодиоды, можно использовать три варианта теплоотведения:

  • через корпус прибора (не всегда можно реализовать);
  • через печатную плату. Охлаждение ведется через неосновные проводящие дорожки, по которым течет ток;
  • с помощью радиатора. Он подходит как к платам, так и к светодиодам.

Обратите внимание! В последней ситуации необходимо правильно провести расчет того, какой именно площади он должен быть.

Радиатор на светодиодах

Самым эффективным способом охлаждения светодиодов является использование радиатора, который легко можно соорудить самостоятельно. Главное помните, что на работу теплоотводчика влияет форма и количество ребер.

Особенности конструкции теплоотводчиков

Озадачившись собственноручно собрать радиатор, подходящий для светодиодов, многие задаются вполне закономерным вопросом «какой лучше?». Ведь сегодня существуют две группы теплоотводчиков, которые различаются по своим конструкционным особенностям:

  • игольчатые. Чаще применяются для системы охлаждения естественного типа. Такие модели применяются для мощных светодиодов;

Игольчатый радиатор

  • ребристые. Используются в системах принудительного охлаждения. Их выбирают в зависимости от геометрических параметров. При этом они могут применяться и для охлаждения мощных светодиодов.

Ребристый радиатор

Выбирая тип теплоотводчика необходимо помнить, что игольчатый пассивный аппарат превышает эффективность ребристой модели на 70%.
Радиатор любой конструкции (ребристой или игольчатой) может иметь различную форму:

  • квадратную;
  • круглую;
  • прямоугольную.

Вариант радиатора, подходящего для светодиодов, следует выбирать в зависимости от потребностей в системе охлаждения.

Особенности вычислений

Расчет схемы для создания своими руками радиатора всегда следует начинать с подбора элементной базы.

Не забывайте, что номинал здесь должен отвечать не только потенциалу собираемого теплоотводчика, но и предотвращению создания дополнительных потерь. Иначе самодельный аппарат будет иметь низкую эффективность.

И в первую очередь для этого необходимо провести расчет площади радиатора.
Что должен включать расчет такого параметра, как площадь:

  • модификация аппарата;
  • какая имеется площадь рассеивания;
  • показатели окружающего воздуха;
  • материал, из которого изготавливается теплоотводчик.

Такие нюансы необходимо учитывать тогда, когда проектируется новый радиатор, а не переделывается старый. Самым важным для самостоятельно сборки теплоотводника будет показатель максимально допустимого рассеивания мощности теплообменного элемента.Чтобы рассчитать площадь радиатора существует два способа.

Первый метод расчета. Для того чтобы определить требуемую площадь, нужно использовать формулу F = а х S х (T1 – T2), где:

  • F — тепловой поток;
  • S – площадью поверхности теплоотводчика;
  • T1 — показатель температуры среды, которая отводит тепло;
  • T2 — температура, которую имеет нагретая поверхность;
  • а – коэффициент, отражающий теплоотдачу. Данный коэффициент для неполированных поверхностей условно принимается равным 6-8 Вт/(м2К).

Длина окружности

Используя этот способ расчета необходимо помнить, что пластина или ребро имеют две поверхности для отвода тепла.

При этом расчет поверхности иглы проводится с помощью длины окружности (π х D), которую нужно умножить на показатель высоты.
Второй метод расчета.

Здесь используется несколько упрощенная формула, выведенная экспериментальным путем. В данном случае используется формула S = [22 – (M x 1,5)] x W, где:

  • S — площадь теплообменника;
  • M – незадействованная мощность светодиода;
  • W – подведенная мощность (Вт).

При этом если будет изготавливаться ребристый алюминиевый аппарат, можно использовать в расчетах данные, которые получили тайванские специалисты:

  • 60 Вт – от 7000 до 73000 см2;
  • 10 Вт – около 1000 см2;
  • 3 Вт – от 30 до 50 см2;
  • 1 Вт – от 10 до 15 см2.

Но в такой ситуации необходимо помнить, что приведенные выше данные подходят к климатическим условиям Тайваня. В нашем случае их стоит брать только лишь при проведении предварительных вычислений.

Материал для изготовления теплоотводчика

Срок службы светодиодов непосредственно зависит от того, какой материал задействован в полупроводнике, а также от качественности работы системы охлаждения.
При выборе материала для теплоотводчика, необходимо руководствоваться следующим:

  • материал должен иметь теплопроводность не менее 5-10 Вт;
  • уровень теплопроводности должен быть выше 10 Вт.

В связи с этим, для изготовления теплоотводчика стоит использовать такие материалы:

  • алюминий. Алюминиевый вариант на сегодняшний день для охлаждения светодиодов используют чаще всего. Но при этом алюминиевый теплоотводчик имеет существенный минус – состоит из ряда слоев. В результате такого строения алюминиевый аппарат провоцирует тепловые сопротивления. Их преодолеть можно только с помощью дополнительных теплопроводных материалов, в роли которых может выступать изоляционные пластины;

Обратите внимание! Алюминиевый радиатор, несмотря на свой недостаток, отлично справляется с отводом тепла. Здесь используется алюминиевая пластинка, которая обдувается вентилятором.

Алюминиевый радиатор

  • керамика. Керамические теплоотводчики имеют специальные трассы, по которым проводится ток. К этим же трассам припаиваются светодиоды. Такие изделия способны отводить в два раза больше тепла;
  • медь. Здесь имеется медная пластинка. Ее отличает более высокая теплопроводность, нежели у алюминия. Но медь уступает алюминию в технических характеристиках и весе. При этом медь — не податливый металл, а после обработки остается много обрезков;

Радиатор из меди

  • пластмасса. К достоинствам стоит отнести доступную стоимость, а также высокий уровень технологичности. При этом в минусах здесь меньшая теплопроводность.

Как видим, самым оптимальным вариантом по цене и качеству будет изготовление своими руками радиатора для светодиодов из алюминия. Рассмотрим несколько способов того, как можно сделать теплоотводчик для светодиодов.

Каким образом изготавливаются теплоотводчики

Не все радиолюбители с охотой берутся за изготовление подобных устройств. Ведь оно будет выполнять ведущую роль. От того, насколько качественно будет сделан своими руками теплоотводчик, зависит срок эксплуатации осветительной установки, выполненной из светодиодов. Поэтому многие предпочитают не рисковать и покупать аппараты для системы охлаждения в специализированных магазинах.

Самодельный радиатор для диодов

Но бывают ситуации, когда нет возможности купить, но его можно изготовить из подручных средств, которые без проблем отыщутся в домашней лаборатории любого радиолюбителя. И здесь подходят два способа изготовления.

Первый способ самостоятельной сборки

Самой простой конструкцией для самодельного радиатора, конечно же, будет круг. Его можно вырезать следующим образом:

  • из листа алюминия вырезаем круг и делаем на нем необходимое количество надрезов;

Разрезаный круг из алюминия

  • далее отгибаем немного сектора. В результате получается некое подобие вентилятора;
  • по осям необходимо отогнуть 4 усика. С их помощью устройство будет крепиться к корпусу лампы;
  • светодиоды на таком радиаторе можно закрепить при помощи термопасты.

Готовый радиатор для диодов круглой формы

Как видим, это достаточно простой способ изготовления.

Второй способ самостоятельной сборки

Охлаждающий аппарат, который будет подключаться к светодиодам, можно самостоятельно сделать их куска трубы, которая имеет прямоугольное сечение, а также из алюминиевого профиля. Здесь вам понадобятся:

  • пресс-шайба с диаметром 16 мм;
  • труба 30х15х1,5;
  • термопаста КТП 8;
  • Ш-образный профиль 265;
  • термоклей;
  • саморезы.

Делаем радиатор следующим образом:

  • в трубе просверливаем три отверстия;

Вариант трубы для радиатора

  • далее сверлим профиль. С его помощью будет осуществляться крепление к лампе;
  • светодиоды крепим к трубе, которая будет выступать в качестве основания теплоотводчика, с помощью термоклея;
  • в местах соединения элементов радиатора наносим слой термопасты КТП 8;
  • осталось собрать конструкцию с помощью саморезов, оснащенных пресс шайбой.

Данный способ будет несколько сложнее в реализации, чем первый вариант.

Заключение

Зная, что собой представляет радиатор, подключаемый к светодиодам, его вполне можно изготовить своими руками из подручных средств. Его правильная сборка поможет вам не только эффективно охлаждать осветительную установку, но и избежать ситуации снижения сроков эксплуатации светодиодов.

Полезные материалы

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.