Режимы плазменной резки металла

Параметры плазменной резки

Режимы плазменной резки металла

Существуют определенные параметры, определяющие процесс плазменной резки. На него влияют многие факторы, в том числе факельный зазор (зазор межу листом и соплом), состав плазмообразующего газа, скорость перемещения резака, сила тока дуги. Причем одни из них напрямую зависят от других.

Плазмообразующий газ

Считается, что в ручной плазморезке наиболее эффективно в качестве плазмообразующего газа использовать обычный воздух.

И это отлично – ведь что может быть доступнее и дешевле? Вот только воздушная смесь хорошо зарекомендовала себя при раскрое листов толщиной до 25 мм. Причем использование воздуха приводит к азотированию кромки.

Такое явление наблюдается при насыщении кромки реза входящим, в состав воздуха, оксида азота.

При автоматической плазменной резке, как правило, применяют двойной газ. Листы толщиной +/-25 мм раскраивают с помощью водяного тумана (дополнительного газа) и азота (основного).

К сожалению, на более тонких листах водяной пар достаточно интенсивно охлаждает рез. При этом не обеспечивается прогрев близлежащих участков металла.

В результате на нижней поверхности образуется шлак, а кромка получается слишком грубой.

Для предотвращения такого дефекта уменьшают скорость резания или (и) увеличивают силу тока.

Для раскроя листов толще, чем 25 мм, большинство производителей плазменных резок рекомендуют использовать водород или аргон в качестве основного газа, а двуокись углерода или азот – как дополнительный. Применение водородно-азотистой смеси приводит к минимизации нитрирующего эффекта.

Углекислый газ значительно дороже азота. Но он незаменим, когда необходимо получить чистые кромки и максимально уменьшить вредные испарения, сопровождающие процесс резки металла.

Следует отметить, что процесс раскроя стальных листов зависит не только от выбора плазмообразующих газов. Важное значение здесь играет оптимальное давление, под которым находится газ. От этого параметра зависит срок службы сопла и качество реза.

Так, если давление повышено, в начале процесса не удается получить качественной кромки. При пониженном же давлении наблюдается недостаточное охлаждение плазмотрона. А это приводит к раздвоению дуги и разрушению сопла. В таблице ниже показано, как действуют различные газы на процесс резания металлов:

Наименование газаВид обрабатываемого металлаДостоинстваНедостатки
Воздух
  • Нержавеющая сталь
  • Углеродистые стали
  • Удобно резать
  • Доступная стоимость
  • Идеальный рез
  • Нитрирование кромок
  • Окисление поверхности
  • Быстрое выгорание электрода
Азот, N2
  • Углеродистые стали
  • Алюминий
  • Нержавейка
  • Большой ресурс электрода
  • Легко режутся оба металла
Водород-аргон, Ar-H2
  • Качественный рез для листов, толще 12,7 мм
  • Дороговизна, не применяется для углеродистых сталей
Кислород, О2
  • Рез чист
  • Нитрирование кромок отсутствует
  • Наибольшая скорость резания

Ток дуги

От этого параметра напрямую зависит толщина раскраиваемого металла и срок эксплуатации сопла и электродов. Каждый комплект сопло-электрод имеет свое значение номинального тока. При резке металла на плазменной установке допустимый ток дуги составляет до 95% от номинального. Увеличивая ток дуги, необходимо синхронно увеличивать размер выходного диаметра сопла.

Факельный зазор

От данного параметра зависит:

  • перпендикулярность образуемыхкромок;
  • плотность плазменной дуги;
  • ее устойчивость.

Чем меньше факельный зазор, тем меньше угол кромки. Оптимальным считается расстояние от сопла до листав диапазоне от 1,5 до 10 мм. Данное расстояние выставляется индивидуально для каждого случая и указывается

в руководстве по эксплуатации источника плазмы.

Чтобы избежать кромочных дефектов, необходимо выдерживать постоянным факельный зазор. Уменьшение его величины приведет к преждевременному сгорания и электрода, и дорогостоящего сопла.

Особенно опасным является контакт сопла и листа, когда факельный зазор равен нулю. Чтобы избежать разрушения сопла по этой причине,
плазменные установки, выпускаемые компанией «ТеплоВентМаш», оборудованы датчиками контроля высоты.

Такие стабилизаторы позволяют автоматически поддерживать оптимальный, заданный оператором, факельный зазор.

Скорость плазменной резки

Именно скорость перемещения резака определяет качество реза. От нее зависит присутствие шлака под листом и на сложность его удаления. Если скорость невелика, возникнет перерасход плазмообразующего газа. А на нижней части листа появится легко удаляемый «низкоростный» шлак.

При повышенной скорости перемещения сопла линия реза становится волнистой. На нижней же части листа появляется плохо отделимый «высокорослый» шлак.

Идеальной скоростью резания листового металла считается такое перемещение резака, при котором угол отставания между прорезанием верхней и нижней кромок не превышает 5 градусов.

Угол наклона кромок и ширина реза

ГОСТ 14792-80 определяет четыре главнейших параметра, влияющих на качество раскроя листового металла. К ним относятся:

  • линейное отклонение;
  • неперпендикулярность торцовойповерхности;
  • её шероховатость;
  • зона термического воздействия.

На точность и качество реза определяющее влияние оказывает угол наклона кромок и ширина реза. А вот форма кромок и размеры реза зависят от тока и напряжения дуги, скорости перемещения плазмотрона и расхода плазмообразующего газа.

На ширину реза влияют ток дуги и размер выходного отверстия в сопле. Стоит хоть немного увеличить эти параметры, как тут же ширина реза увеличится. Чтобы оценить ширину шва, можно увеличить диаметр выходного отверстия в сопле в 1,5 раза.

Для получения точных размеров вырезаемых заготовок, необходимо сдвинуть плазмотрон «в металл» на полуширину реза. Если
купить станок плазменной резки с ЧПУ, это произойдет автоматически. В нашем оборудовании встроены специальные корректоры (или компенсаторы реза). Они устанавливают эквидистантную траекторию перемещения инструмента.

Вырезаемая деталь будет меньше положенного (если рез широк) из-за частичного разрушения электрода, повышенного тока дуги, завышенного факельного зазора, низкой скорости резки или уменьшенный расхода плазмообразующего газа.

Причиной узкого реза (и, соответственно, больших размеров заготовки) являются малый факельный зазор, пониженная дуга тока, перерасход плазмообразующего газа и завышенная скорость перемещения резака.

Углом наклона кромок считают угол, образованный перпендикуляром к поверхности листа и обработанной плоскостью. Если подвод плазмообразующего газа тангенциальный, правая и левая кромки реза отличаются углами наклона.

Закручивание газового потока по часовой стрелке приводит к тому, что, по ходу движения плазмотрона угол правой кромки составит от 1 до 3 градусов, а левой – от 3 до 8.

Если угол кромки превышает 5 градусов, следует пересмотреть параметры резки.

Что такое плазменная резка металлов — описание технологии

Режимы плазменной резки металла

Для резки металлов используют несколько различных методов отличающихся друг от друга себестоимостью и эффективностью. Некоторые способы используются исключительно для промышленных целей другие также можно применять и в быту.

К последним относится плазменная резка металлов. Эффективность плазменного раскроя ограничивается опытом мастера и правильным выбором установки. Что такое плазменная резка металла? На чем основан принцип проведения работ? Какие сферы применения имеет этот способ раскроя материалов? резка металла плазмой

Основы резки металлов плазмой

Чтобы понять основы резки металла с помощью плазменного метода следует для начала уяснить, что же такое плазма? От правильного понимания того как устроен плазматрон и принципов работы с ним зависит качество конечного результата.

Термическая плазменная обработка металлов зависит от параметров рабочей струи газа или жидкости, направленной под давлением на обрабатываемую поверхность.

Для достижения необходимых результатов струю доводят до следующих характеристик:

  • Скорость — струя направляется под высоким давлением на поверхность материала. Можно сказать, что плазменный раскрой металла основан на разогревании металла до температуры плавления и быстрого выдувания его. Рабочая скорость струи при этом составляет от 1,5 до 4 км в сек.
  • Температура — для образования плазмы необходимо практически моментально разогреть воздух до 5000-30000°C. Высокая температура достигается благодаря созданию электрической дуги. При достижении необходимой температуры воздушный поток ионизируется и меняет свои свойства, приобретая электропроводность. Технология плазменной резки металла подразумевает использование систем нагнетания воздуха, а также осушителей, которые удаляют влагу.
  • Наличие электрической цепи. Все о раскрое металла плазмой можно узнать только на практике. Но некоторые особенности необходимо учитывать еще до приобретения установки. Так, существуют плазмотроны косвенного и прямого воздействия. И если для вторых обязательно, чтобы обрабатываемый материал пропускал электричество и был включен в общую электрическую сеть (выступая в роли электрода), то для первых такой необходимости нет. Плазма для резки металла в таком случае получается с помощью встроенного электрода внутри держателя. Этот способ используют для металлов и других материалов, которые не проводят электричество.

Еще один важный момент, который следует учитывать, это то, что плазменная резка толстого металла практически не выполняется, так как это ведет к увеличенным материальным затратам и малоэффективно.

Характеристики и принцип резки металла плазмой

Основной принцип работы плазменной резки металла можно описать следующим образом:

  • Компрессор под давлением подает воздух на горелку плазмотрона.
  • Воздушный поток моментально разогревается благодаря воздействию на него электрического тока. По мере нагревания воздушная масса начинает пропускать сквозь себя электричество, в результате чего и образуется плазма. В некоторых моделях вместо воздуха используют инертные газы.
  • Резка стали плазмой, если рассмотреть ее более подробно осуществляется методом быстрого узконаправленного нагревания поверхности до необходимой температуры с последующим выдуванием расплавленного металла.
  • При выполнении работ неизбежно образуются отходы от плазменной резки. Отходы включают высечку или остатки листа после высечения необходимых деталей, а также окалины или остаток расплавленного металла.

Так как процесс связан с моментальным разогревом разрезаемого материала до жидкого состояния, толщина металла при резке составляет: алюминий до 120 мм; медь 80 мм; углеродистая и легированная сталь до 50 мм; чугун до 90 мм.

Существуют два основных способа обработки материалов, от которых зависят характеристики плазменной резки. А именно:

  • Плазменно-дуговая — способ подходит для всех видов металла, которые в состоянии проводить электрический ток. Обычно плазменно-дуговую резку используют для промышленного оборудования. Суть способа сводится к тому, что плазма образовывается за счет дуги, которая появляется непосредственно между поверхностью обрабатываемого материала и плазмотроном.
  • Плазменно-струйная – в этом случае дуга возникает в самом плазмотроне. Плазменно-струйный вариант обработки более универсален, позволяет разрезать неметаллические материалы. Единственным недостатком является необходимость периодической замены электродов. резка плазмой сложных форм Плазменная резка металла работает как обычная дуговая, но без использования привычных электродов. Но эффективность способа обработки прямо пропорциональна толщине обрабатываемого материала.

Скорость и точность резки металла плазмой

Как и при любом другом виде термической обработки, при плазменной резке металла происходит определенное оплавление металла, что отражается на качестве реза. Существуют и другие особенности, которые являются характерными для этого метода. А именно:

  • Конусность — в зависимости от профессионализма мастера и производительности установки, конусность может составлять от 3° до 10°.
  • Оплавление кромки — независимо от того, какие режимы резки металла используются и от профессионализма мастера выполняющего работы по обработке металла, не удается избежать небольшого оплавления поверхности при самом начале выполнения работ.
  • Характеристики реза — качество и скорость плазменной резки металла зависит от того, какие именно операции необходимо выполнить. Так разделительный рез с низким качеством выполняется быстрее всего, при этом большинство ручных установок способны разрезать металл до 64 мм. Для фигурной резки возможна обработка деталей толщиной всего до 40 мм.
  • Скорость выполнения работ — обычная резка металла с помощью плазматрона осуществляется быстро и с минимальным расходом электроэнергии и напряжения. Скорость плазменной резки металла согласно техническим характеристикам ручных установок и ГОСТ составляет не более 6500 мм в минуту.

От профессионализма мастера во многом зависит качество выполнения работ. Чистый и точный рез с минимальным отклонением от необходимых размеров может выполнить только работник с профильным образованием. Без соответствующей подготовки выполнить фигурную резку вряд ли получится.

Плазменная резка цветных металлов

При обработке цветных металлов используются разные способы резки в зависимости от типа материала, его плотности и других технических характеристик. Для разрезания цветных сплавов требуется соблюдения следующих рекомендаций. ручной раскрой плазмой

Резка нержавеющей стали

Для выполнения операций не рекомендуется использование сжатого воздуха, в зависимости от толщины материала может применяться азот в чистом виде, либо смешанный с аргоном.

Необходимо учитывать, что нержавеющая сталь чувствительна к воздействию переменного тока, это может привести к изменению ее структуры и как следствие быстрому выходу из эксплуатации.

Резка нержавейки плазмой осуществляется с помощью установки использующей принцип косвенного воздействия.

Плазменная резка алюминия

Для материала с толщиной до 70 мм, может использоваться сжатый воздух. Применение его нецелесообразно при малой плотности материала.

Более качественный рез листа алюминия до 20 мм достигается при использовании чистого азота, а более 70 мм до 100 мм включительно с помощью азота с водородом.

Резка алюминия плазмой при толщине от 100 мм осуществляется смесь аргона с водородом. Этот же состав рекомендовано использовать для меди и высоколегированной толстостенной стали.

Где применяется плазменный раскрой металла

Использование плазмотронов не зря пользуется такой большой популярностью. При относительно простой эксплуатации и незначительной стоимости ручной установки (по сравнению с другим оборудованием для резки) удается достичь высоких показателей относительно качества реза.

Применение плазменной резки металла получило распространение в следующих сферах производства:

  • Обработка металлопроката — с помощью плазмы удается разрезать практически любой тип металла, включая цветной, тугоплавкий и черный.
  • Изготовление металлоконструкций.
  • Художественная ковка и обработка деталей. С помощью плазменного резака можно сделать деталь практически любой сложности.
  • Различные виды промышленности, машиностроение, капитальное строительство зданий авиастроение и др. – во всех этих сферах деятельности не обойтись без использования плазменных резаков. Применение станков с плазменной резкой не заменило ручных установок. Так художественная резка металла плазмой позволяет сделать уникальные детали точно соответствующие замыслу художника, для использования их в качестве декоративных украшений для заборов и лестниц, а также перил, ограждений и т. д.

Применение станков с плазменной резкой не заменило ручных установок. Так художественная резка металла плазмой позволяет сделать уникальные детали точно соответствующие замыслу художника, для использования их в качестве декоративных украшений для заборов и лестниц, а также перил, ограждений и т. д. станок плазменной резки

Резка металла плазмой – преимущества и недостатки

Без резки металла не может обойтись практически ни одно промышленное предприятие, так или иначе связанное с металлопрокатом. Быстрое разрезание листового материала на заготовки, декоративная фигурная резка металла плазмой, вырезание точных отверстий – все это можно выполнить достаточно быстро с помощью плазмотрона.

Плюсы, которые имеет метод, заключаются в следующем:

  • Высокая производительность и скорость обработки деталей. По сравнению с обычным электродным методом можно выполнить объемы работ от 4 до 10 раз больше.
  • Экономичность — плазменный метод намного выигрывает на фоне стандартных способов обработки материалов. Единственные ограничения связанны с толщиной металла. Нецелесообразно и экономически невыгодно разрезать с помощью плазмы сталь толще 5 см.
  • Точность — деформации от тепловой обработки практически незаметны и не требуют дополнительной обработки впоследствии.
  • Безопасность.

Все эти преимущества плазменной резки металла объясняют, почему метод пользуется настолько широкой популярностью не только в промышленных, но и бытовых целях. Но говоря о плюсах необходимо заметить и некоторые отрицательные стороны.

Недостатки технологии плазменной резки

  • Ограничения, связанные с толщиной реза. Даже у мощных установок максимальная плотность обрабатываемой поверхности не может быть выше, чем 80-100 мм.
  • Жесткие требования относительно выполнения обработки деталей. От мастера требуется четко придерживаться угла наклона резака от 10 до 50 градусов. При несоблюдении этого требования нарушается качество реза, а также ускоряется износ комплектующих.

Плазменная резка металла от компании «ПЛАЗМА ЗАКАЗ»

Мы производим высококачественную плазменную резка металла на современном оборудовании Hypertherm с системой плазменной резки HyPerformance® HPR400XD.

Наше оборудование осуществляет плазменную резку металла толщиной до 80 мм.

Вентилируемый стол раскроя — 2200х6200, система управления ЧПУ Hypertherm с интерфейсом для резки со скосом — с такими показателями наше оборудование может практически все.

Художественная плазменная резка метала

  • Для ворот, калиток, секций заборов, лестниц, ограждений, садовой мебели
  • Узор и орнамент на листах металла от 3 до 20 мм
  • Работаем с любыми металлами и сплавами, ровный и чистый срез, без ограничений по форме и сложности фигур

Наше оборудование для плазменной резки

MEGA HORNET 1000™ с системой плазменной резки HyPerformance® HPR400XD обеспечивает премиальную точность выполнения процессов плазменной и газовой резки. Он включает и поддерживает полный набор современных технологий от Hypertherm. Конструкция машины предусматривает непрерывную работу в самых тяжёлых условиях.

Оборудование имеет широкий спектр возможностей:

  • Плазменная резка листового металла до 50мм толщиной (проколы) и до 80мм (от края листа)
  • Резка отверстий различной формы до толщины металла 50мм
  • Отсутствие конусности отверстий при толщине металла до 25мм, благодаря применению технологии True Hole.
  • Газовая резка листового металла толщиной до 100мм
  • Резка металла с фаской: Y, A, V (обработка кромок деталей под сварку).
  • Раскрой листового проката размером до 6000х2000мм (вентилируемый стол раскроя 6200х2200)
  • Гравировка — плазменная разметка и маркировка деталей
  • Кернение (под сверление)
  • Высокая точность геометрических параметров получаемых деталей
  • Производительность установки до 8 тонн в смену.

Сравнение плазменной и лазерной резки металл

Отличие лазерной резки металла от плазменной заключается в методах воздействия на поверхность материала.

Лазерные установки обеспечивают большую производительность и скорость обработки деталей, при этом после выполнения операции наблюдается меньший процент оплавленности.

Минусом лазерного оборудования является его высокая стоимость, а также то, что толщина разрезаемого материала должна быть меньше 20 мм. По сравнению с лазером плазмотрон имеет меньшую стоимость, более широкую сферу применения и функциональные возможности.

Плазменная резка

Режимы плазменной резки металла

При данном методе резки, в качестве режущего инструмента используется струя высокотемпературной плазмы, мощность которой — позволяет резать черные, либо цветные металлы толщиной до 20 сантиметров.

Чаще всего, осуществляется плазменная резка металла с ЧПУ, то есть с помощью специальных программируемых станков.

Фото процесса:

Такие станки, позволяют осуществлять резку металлов по заданным параметрам в промышленных масштабах, обеспечивая высокую скорость и эффективность работы.

Кроме того, плазменная резка на станках с ЧПУ позволяет обеспечить достаточно высокую безопасность работы с плазмой, при соблюдении всех правил техники безопасности.

Инструменты для плазменной резки металлов, обычно обладают достаточно большими габаритами, а так же требуют мощного источника электрической энергии.

Но современные технологии позволяют создавать и более компактные приборы, с помощью которых осуществляется ручная плазменная резка металла.

Инструменты для ручной резки так же потребляют достаточно много энергии, кроме того — ручная резка осуществляется со значительно меньшей скоростью, чем такая же плазменная резка на станке с ЧПУ.

Точность ручной плазменной резки несколько ниже, но на стороне этого метода — большая универсальность, так как приборы для ручной резки обладают небольшими габаритами и легко транспортируются практически куда угодно.

Для работы такого прибора нужно только подключение к электросети.

Технология и принцип работы

Инструменты для плазменной резки позволяют работать практически с любыми металлами или сплавами, даже сверхпрочными либо отличающимися другими особыми свойствами.

Также, технология плазменной резки металла позволяет значительно ускорить резку металлических деталей малой и средней толщины по сравнению с газопламенной резкой.

Плазменно-дуговой способ

Для того, чтобы создать плазму — между электродом аппарата для резки и разрезаемым металлом создается электрическая дуга, одновременно — из расположенного рядом с электродом сопла, подается газ под высоким давлением.

Электрическая дуга преобразует струю газа в поток плазмы имеющий температуру от 5 до 30 тысяч градусов. При этом скорость движения струи плазмы достигает более полутора километров в секунду.

Наглядное видео:

Поток плазмы, имеющий такие показатели температуры и скорости движения, легко справляется с разрезанием любых даже самых прочных сплавов.

При этом, плазменно дуговая резка металлов обеспечить высокое качество и чистоту получаемого среза и невысокий нагрев самой разрезаемой детали, что исключает тепловую деформацию заготовки, которая зачастую является серьезной проблемой при других методах разрезания металлов.

Плазменно-дуговая резка металла подразумевает включение разрезаемого металла в электрическую цепь, то есть разрез осуществляется с помощью электрической дуги.

Таким образом, режут металлы, которые другим способом обработать крайне сложно либо невозможно, к ним относятся коррозионностойкие стали, титан, медь.

Также, с помощью этого метода легко режутся: алюминий, чугун и другие металлы, сплавы, черные либо цветные.

При резке плазменной дугой происходит выплавление металла в точке разреза, затем расплавленный металл выдувается струей газа.

Метод резки плазменной струей

Также существует метод резки с помощью потока плазмы. При этом разрезаемый металл не является компонентом электрической цепи.

В данном случае — электрическая дуга так же есть, но она проходит от наконечника электрода до внутренней стенки сопла плазмотрона.

Таким образом, можно осуществлять резку неэлектропроводных материалов, разрезание металла осуществляется за счет воздействия высокоскоростной плазмы, электрическая дуга используется только для создания плазмы и придания ей большой скорости.

Именно этот метод используется для изготовления аппаратов ручной плазменной резки.

                                                                              Технологии плазменной резки

Метод резки струей плазмы незаменим при резке тонких листов металла, в других случаях (за исключением ручной резки) он используется достаточно редко.

В ручной резке преимущественно используется именно метод резки потоком плазмы, так как с помощью этой технологии можно создавать компактные приборы с невысоким весом и энергопотреблением.

Назначение форсунок

Форсунки, по которым подается газ, требуют охлаждения, чаще всего используется воздушное охлаждение, но присутствует и аппаратура с водным охлаждением.

Форсунки, обычно — используются с регулируемым диаметром сопла, что позволяет точно настроить скорость и силу истечения газов.

Благодаря этому — один и тот же аппарат можно настроить для эффективной работы практически с любым металлом, самого широкого диапазона толщины и состава материала.

Как правило, форсунки с воздушным охлаждением более дешевы и надежны, но жидкостное охлаждение форсунок позволяет развивать значительно большую мощность, чем при использовании воздушного охлаждения. 

Назначение электродов

Электроды, используемые в аппаратах для плазменной резки, изготавливают из сплавов вольфрама с лантаном.

Это связано с тем, что электрод должен обладать высокой электропроводностью и при этом должен быть устойчив к воздействиям высокой температуры.

Газы, которые применяются для создания плазмы делятся на активные и неактивные.

Посредством активных газов работают кислородная либо воздушно плазменная резка металла, эти разновидности метода используются для резки черных металлов и их сплавов (сталь, чугун).

Для резки цветных металлов и сплавов, наилучшим образом подходит — резка с применением неактивных газов, таких как аргон, азот, водород.

Схематичный рисунок режущего плазмотрона

Так как физический принцип плазменной резки металла позволяет работать практически с любыми металлами, обеспечивать высокую безопасность и скорость работы, то этот метод обработки металлов получил достаточно широкое распространение на самых различных производствах.

Резка металла с помощью плазменной струи позволяет осуществлять сложную фигурную вырезку.

Помимо быстрого вырезания сложных технических деталей, возможна и художественная плазменная резка металла, которая позволяет создавать настоящие произведения искусства либо декоративные элементы даже из очень тугоплавких сплавов.

Технология предполагает различные режимы плазменной резки металла, которые позволяют быстро подстроить оборудование под работы не только с определенной разновидностью сплава, но и с заготовками определенной толщины.

Благодаря различным режимам работы оборудования можно легко подобрать нужный режим в большинстве случаев, что позволяет экономить как энергию, так и ресурс аппаратуры.

Основные преимущества

Резка металлов с помощью плазмы является одним из наиболее современных и технически совершенных способов работы с различными металлами.

Эта технология появилась относительно недавно, но получила широкое распространение, благодаря ряду преимуществ, которые она предлагает по сравнению классическими инструментальными методами работы с металлами.

Основные преимущества плазменной резки металла заключаются в:

  • скорости резки;
  • универсальности (можно работать с любыми металлами и славами);
  • нет ограничений по форме обрабатываемых деталей и сложности вырезаемых фигур;
  • срез, который образуется в процессе резки, обладает высокой чистотой и качеством поверхности.

Для того, чтобы максимально использовать все преимущества плазменной резки металлов — необходимо правильно и точно подбирать режимы работы установки под конкретный материал, при этом необходимо учитывать множество факторов, таких как:

  • свойства материала;
  • его толщина;
  • скорость и температура плазмы;
  • скорость выполнения разреза.

При правильном подборе этих, а так же некоторых других специфических параметров — плазменная резка будет осуществляться быстро и с высоким качеством.

Резка металла с помощью плазмы более безопасна, чем обычная газопламенная резка, так как в процессе резки не используются баллоны с кислородом, горючими газами.

Таблица скоростей плазменной резки

Аппараты для плазменной резки могут иметь различные габариты и назначение.

Производятся аппараты для ручной плазменной резки, но чаще всего используется автоматическая плазменная резка металла, по причине более высокой скорости и точности работы такого оборудования.

Аппараты для ручной плазменной резки могут производится с различными конструктивными особенностями сопла и охладительных систем.

Наиболее компактные и универсальные из них могут работать на открытом воздухе, в условиях открытых строительных либо монтажных площадок.

При этом, плазма может создаваться как на прямую – из воздуха, так и из подаваемых газов, таких как водород либо аргон.

Еще одним различием в таких аппаратах является система охлаждения плазмотрона, она может быть как жидкостной так и воздушной.

Воздушная система лучше подходит для работы на открытых площадках, но обладает меньшей эффективностью и не позволяет аппарату развивать действительно высокую мощность.

Если еще 20-30 лет назад резка металла плазмой была мало распространена и относилась к экзотическим методам работы с металлами, то в наше время можно легко найти компании, которые занимаются предоставлением таких услуг, либо же самостоятельно приобрести оборудование для осуществления ручной плазменной резки.

Популярные металлы

Наиболее распространена плазменная резка листового металла, это связано с тем, что этот метода на сегодняшний день является одним из самых дешевых и быстрых способов работы с листовым прокатом.

Как правило, оборудование для работы с листами металла позволяет осуществлять резку листа толщиной до 50 мм, независимо от сплава, из которого изготовлен лист.

Кроме того современные станки плазменной резки позволяют вырезать изделия практически любой геометрической формы с точностью среза до 0,5 мм.

Нередко требуется точно и быстро осуществить резку труб. В отличие от резки листового металла плазменная резка труб осуществляется в специальных машинах, которые позволяют вращать трубу в процессе резки.

Скорость такой резки может достигать 9000 мм, а точность среза до 0,1 мм.

Благодаря таким параметрам, а так же невысокой цене плазменная резка труб является одним из наиболее доступных методов точной резки труб самого широкого диапазона диаметров и практически любого сплава.

Одним из сложных для работы материалов является алюминий и его сплавы, этот металл достаточно легко окисляется, при резке сложно получить чистый и точный срез. 

Алюминий

При этом, плазменная резка алюминия с использованием воздуха или активных газов — не является наилучшим выбором, так как поверхность среза будет покрыта толстым слоем окислов, что негативно скажется на качестве получаемых деталей.

Для работы с алюминием требуются аппараты плазменной резки, работающие на неактивных газах, таких как аргон либо азот.

При их использовании на поверхности среза алюминия практически не будет оксидов, эта разновидность метода является одной из наиболее подходящих для работы с этим металлом.

Не смотря на универсальность метода, плазменная резка стали является наиболее частой областью применения плазменного оборудования, по причине того, что сталь является наиболее распространенным сплавом.

Кроме того, для резки стали нет необходимости применять инертные газы, что позволяет использовать даже самое простое и недорогое оборудование, получая отличные результаты как по точности так и по скорости работы.

Нержавеющая сталь

Если осуществляется плазменная резка нержавейки, то она также не требует технических ухищрений, так как этот сплав устойчив к окислению и его вполне возможно резать с помощью воздушно-дуговой разновидности плазменной резки, которая является наиболее дешевой и доступной.

Еще одним несомненным преимуществом является возможность работы даже с очень тонкими слоями металла без потерь качества и точности резки.

Именно плазменная резка тонкого металла является основным и практически единственным конкурентом в этой области для лазерной резки.

Это связано с тем, что методами механической обработки крайне сложно осуществлять резку тонкого металла, при этом они не удовлетворяют современным требованиям по точности, скорости работы и качеству получаемых срезов.

Рыночные расценки на услуги

Благодаря широкому распространению оборудования для плазменной резки, стоимость осуществления этой работы достаточно невысока и доступна.

На нее оказывает влияние толщина обрабатываемого материала, вид металла, который будет подвергаться резке, а так же сложность изготавливаемых деталей.

Предлагают такие услуги достаточное количество различных предприятий, поэтому найти подрядчика для выполнения данной работы не составляет труда. Так, стоимость плазменной резки металла обычно начинается от 25-30 рублей за погонный метр.

В случае, если требуется осуществить резку цветных металлов, минимальная стоимость погонного метра будет составлять 50-60 рублей.

Так же может осуществляться и плазменная резка металла своими руками, даже в домашних условиях.

Для этого потребуется приобрести соответствующее оборудование, которое можно переносить и вес которого находится в пределах 5-8 килограмм.

Для осуществления ручной плазменной резки потребуется подключение аппарата к электрической сети.

При ручной работе цена услуг плазменной резки металла будет несколько выше, чем при автоматической.

Но при этом она может осуществляться в широком диапазоне условий и обладает значительно большей автономностью по сравнению с промышленным оборудованием.

Наибольшей популярностью пользуется воздушно плазменная чпу резка металла.

При этом способе обработки не используются инертные газы, поэтому он подходит только для работы со сталью и другими сплавами железа, а цена плазменной резки металла таким способом весьма невысока.

Основным преимуществом такого метода является высокая скорость резки, а так же возможность запрограммировать станок на изготовление даже очень сложных изделий в автоматическом режиме.

В последние годы появилось множество компаний, которые предлагают услуги плазменной резки металла.

Это создало высокую конкуренцию на этом рынке и привело к тому, что цена резки металла плазмой значительно уменьшилась и стала доступна широкому кругу потребителей.

Цена услуг плазменной резки металла включает в себя стоимость расходных материалов (электроэнергии и газов), стоимость оборудования, а так же сложность изделий, которые требуется вырезать.

Режимы плазменной резки металла

Режимы плазменной резки металла

С необходимостью раскроя металлических изделий постоянно сталкиваются в машиностроении, строительстве, коммунальных хозяйствах, творческих мастерских. Чтобы разрезать материал, применяются различные методы.

Принцип работы плазменной резки металла и область применения данного метода, позволяют ему пользоваться популярностью при изготовлении металлических конструкций и изделий на предприятиях, в частных хозяйствах.

Виды резки при помощи плазмы

Плазменно-дуговой раскрой осуществляется двумя методами.

Ручной раскрой

В данном случае нарезание металлов плазмой проводится при использовании портативных непромышленных плазморезов, имеющих в составе:

  • основной агрегат с трансформатором и выпрямительной подстанцией;
  • силовой питающий кабель;
  • воздушный шланг и кабель для подсоединения резака;
  • плазменный пистолет.

Принцип плазменно-дуговой резки

Ручной плазменный агрегат немного весит (до 25 кг), работает от сети 220 В, универсален, доступен в продаже и стоит недорого.

Автоматический раскрой

Совместив технологию раскроя плазменным резаком с ЧПУ, получилось добиться высокой точности, качества и скорости реза. Агрегаты обладают большой мощностью, работают от сети постоянного тока – 380 В, в состоянии разрезать металл, имеющий толщину до 6 см.

Станок с ЧПУ для резки металла

Как работает плазмотрон

В качестве режущего инструмента в аппаратах используется струя плазмы.

Процесс резки металлических изделий:

  1. От источника электрического питания ток по кабелю подается на горелку, где происходит образование электродуги между анодом и катодом.
  2. Компрессор подает потоки газа, которые завихрителями направляются к электрической дуге.
  3. При прохождении потоков через дугу происходит ионизация газа и разогрев до высокой температуры (до 30 тыс. градусов).
  4. Газ превращается в плазменную струю.
  5. При воздействии разогретого воздуха, выходящего под большим давлением, металл разрезается.

Основные технологические аспекты

Работая с плазморезом, разрезающим металл, нужно учитывать многие нюансы, что обычно приходит с опытом, а именно:

Резка металла плазморезом

  • следует обеспечить приток воздуха, которым охлаждается плазменный резак;
  • подаваемый для резки газ не должен содержать частиц воды или масла, что может привести к поломке оборудования;
  • заготовка должна быть очищена предварительно;
  • для получения качественного реза следует правильно выставлять силу тока и давление газа;
  • плазменный резак нужно вести со скоростью от 0,2 до 2 м/мин (она зависит от того, какой металл необходимо разрезать и от силы тока).
  • сопло при плазменной резке металлов необходимо держать перпендикулярно заготовке (оптимальное расстояние между ними: 1,6-3 мм).

Рекомендации профессионалов

Опытные мастера рекомендуют следить за искрами с тыльной стороны разрезаемого материала. Если они не видны, возможно, превышена оптимальная скорость и металл не разрезан до конца. Однако замедление процесса может привести к появлению окалины и плохому качеству шва.

Схема подключения плазмотрона к трансформатору

Перед началом работы необходимо продуть пистолет при помощи газа. Для этого, нажав на соответствующую кнопку, на 30 секунд включается режим продувки плазмотрона. Это позволяет удалить из пистолета конденсат и различные загрязнения.

При разрезании материала электродуга может погаснуть. Эта проблема может быть вызвана износом электрода, недостаточной скоростью ведения пистолета и неверно выбранным расстоянием между соплом и заготовкой.

Для работы применяются агрегаты, предназначенные для разрезания изделий с упором резака на заготовку. В этом случае отпадает необходимость в соблюдении оптимального расстояния между ними. Но большинство плазмотронов рассчитаны на проведение работ с поддержанием некоторого зазора между соплом и металлом. Если есть трудности в обеспечении требуемого расстояния, можно подложить опору.

Качество реза во многом определяется состоянием сопла и электрода, которые являются расходными материалами. За их износом требуется следить и проводить своевременную замену, иначе невозможно получить стабильную электрическую дугу, на металле образуются наплывы и шлак.

Резка металла портативным плазморезом

Важным моментом при проведении работ является соблюдение правил техники безопасности. Специальная экипировка, включающая плотную одежду, защитные очки, маску и перчатки, позволят уберечься от вредных паров, высоких температур и излучения.

Виды применяемых газов

С помощью плазмотрона можно резать любой металл. Разница заключается в разновидности используемого при этом газа.

Плазменная резка металла при помощи воздуха

Использование воздуха для образования плазмы позволяет работать практически с любыми металлическими заготовками: из черной и нержавеющей стали, меди, латуни и др.

Этот способ относится к наиболее бюджетным. На воздушно-плазменном методе устроено довольно примитивное оборудование, которое может использоваться, в том числе, и в частных хозяйствах.

Качество и скорость реза – среднего уровня.

Технология плазменной резки

Кислородная резка

В профессиональном оборудовании применяется чистый кислород. Такие устройства позволяют добиться хорошего качества шва с небольшим слоем облоя, перпендикулярности реза и высокой скорости.

Резка защитными газами

Дорогое современное оборудование для плазменной резки металла работает на кислороде, аргоне, азоте и воздухе. Стоимость плазмотронов может превышать 10 миллионов рублей. Качество обработки изделий максимально приближено к тому, которого позволяет добиться лазерная резка.

Метод раскроя обеспечивает:

  • скорость, составляющую от 2,5 до 10 м/мин;
  • толщину струи, которая варьируется от 0,5 до 2 мм;
  • толщину обрабатываемого изделия, находящуюся в пределах от 0,5 до 60 мм;
  • давление газа, имеющее значение от 5 до 12 атм.;
  • значение тока, которое находится в диапазоне от 20 до 800 А.

Плазменная резка металла – плюсы и минусы

Резка при помощи плазмы имеет конкурентов в виде трех аналогичных вариантов обработки заготовок: лазерного, гидроабразивного и газокислородного метода. Все они характеризуются определенными положительными и отрицательными аспектами применения.

Достоинства плазменно-дугового метода

Преимущества резки плазмой:

  • Способ – универсален, с его помощью можно обрабатывать любой металл, правильно подобрав режим.
  • При обработке не перегревается сам металл (перегрев пагубно сказывается на его характеристиках, а также увеличивает продолжительность процесса).
  • Ширина реза небольшая, его качество позволяет в ряде случаев не прибегать к дальнейшей обработке шва.
  • Не загрязняется окружающая среда.
  • Метод отличает хорошая производительность: с его помощью можно разрезать металл толщиной до 6 см.
  • Отсутствие необходимости в применении газовых баллонов позволяет обеспечить безопасность рабочего процесса.

Недостатки, которыми обладает плазменный способ

Наряду с многочисленными преимуществами использования плазменной резки металла, присутствуют и некоторые отрицательные моменты:

  • Здоровью человека может быть нанесен вред из-за высокого уровня шума при работе, применение азота может привести к отравлению.
  • Плазменный агрегат имеет достаточно сложную конструкцию и высокую стоимость.
  • Расходные материалы, к которым относятся сопло и электроды, тоже стоят недешево.

Научившись работать с плазмотроном, можно выполнять как несложные работы по разрезанию листовых и трубных материалов, так и фигурную резку, нарезание отверстий.

по теме: Аппарат плазменной резки — плазморез

Плазменная резка – все нюансы технологии резки металла плазмой

В последнее время использование плазменного потока для раскроя материалов набирает все большую популярность. Еще более расширяет сферу использования данной технологии появление на рынке ручных аппаратов, с помощью которых выполняется плазменная резка металла.

Плазменная резка металла значительной толщины

Суть плазменной резки

Плазменная резка предполагает локальный нагрев металла в зоне разделения и его дальнейшее плавление. Такой значительный нагрев обеспечивается за счет использования струи плазмы, формируют которую при помощи специального оборудования. Технология получения высокотемпературной плазменной струи выглядит следующим образом.

  • Изначально формируется электрическая дуга, которая зажигается между электродом аппарата и его соплом либо между электродом и разрезаемым металлом. Температура такой дуги составляет 5000 градусов.
  • После этого в сопло оборудования подается газ, который повышает температуру дуги уже до 20000 градусов.
  • При взаимодействии с электрической дугой газ ионизируется, что и приводит к его преобразованию в струю плазмы, температура которой составляет уже 30000 градусов.

Полученная плазменная струя характеризуется ярким свечением, высокой электропроводностью и скоростью выхода из сопла оборудования (500–1500 м/с). Такая струя локально разогревает и расплавляет металл в зоне обработки, затем осуществляется его резка, что хорошо видно даже на видео такого процесса.

В специальных установках для получения плазменной струи могут использоваться различные газы. В их число входят:

  • обычный воздух;
  • технический кислород;
  • азот;
  • водород;
  • аргон;
  • пар, полученный при кипении воды.

Технология резки металла с использованием плазмы предполагает охлаждение сопла оборудования и удаление частичек расплавленного материала из зоны обработки.

Обеспечивается выполнение этих требований за счет потока газа или жидкости, подаваемых в зону, где осуществляется резка.

Характеристики плазменной струи, формируемой на специальном оборудовании, позволяют произвести с ее помощью резку деталей из металла, толщина которых доходит до 200 мм.

Устройство и принцип действия плазменной резки

Аппараты плазменной резки успешно используются на предприятиях различных отраслей промышленности. С их помощью успешно выполняется резка не только деталей из металла, но и изделий из пластика и натурального камня.

Благодаря таким уникальным возможностям и своей универсальности, данное оборудование находит широкое применение на машиностроительных и судостроительных заводах, в рекламных и ремонтных предприятиях, в коммунальной сфере.

Огромным преимуществом использования таких установок является еще и то, что они позволяют получать очень ровный, тонкий и точный рез, что является важным требованием во многих ситуациях.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.