Самый тугоплавкий металл в мире

Какой металл считается самым тугоплавким

Самый тугоплавкий металл в мире

Металл с давних времён используются человеком в различных сферах деятельности. Чтобы получить качественное металлическое изделие, важно подобрать хороший материал, оценивая при этом его характеристики. Важный параметр — тугоплавкость. Для изготовления некоторых изделий подходят только самые тугоплавкие металлы.

Исторические сведения

Прежде чем изучать характеристики самых тугоплавких металлов в мире следует ознакомиться с их историей открытия. Металлообработка известна человеку несколько тысяч лет. Однако активное получение тугоплавких металлов началось только со второй половины 19 века.

Изначально они использовались только в электротехнике. С появлением новых технологий в строении самолётов, машин, поездов и ракет детали с высоким показателем плавления начали использоваться активнее. Пик популярности заготовок, выдерживающих температуры более 1000 градусов, пришёлся на середину 20 века.

Определение

Тугоплавкий металл — отдельный класс, к которому относятся металлические заготовки, выдерживающие воздействие критически высоких температур. Обычно у представителей этого класса температура плавления более 1600 градусов, что считается точкой плавления железа. К ним относят благородные сплавы. Их ещё называют представителями платиновой группы.

Виды

Виды металлов и сплавов, обладающие устойчивостью к повышенным температурам:

  1. Вольфрам. Впервые о нем узнали в 1781 году. Чтобы расплавить, его потребовалось разогреть до 3380 градусов. Вольфрам считается самым тугоплавким. Изготавливается он из порошка, который обрабатывается химическим способом. Сначала смесь разогревается, а затем подвергается давлению. На выходе получаются спрессованные заготовки.
  2. Ниобий. Плавится при 2500 градусах. Обладает высокой теплопроводностью, обрабатывается не так сложно, как вольфрам. Изготавливается из порошка, который запекают и обрабатывают с помощью высокого давления. Из ниобия делают проволоку, трубы и ленту.
  3. Молибден. Визуально его можно спутать с вольфрамом. Изготавливается он из порошка при запекании и воздействии давлением. Как и вольфрам обладает парамагнетическими свойствами. Используется в радиоэлектронике, изготовлении промышленного оборудования, печей и электродов.
  4. Тантал. Плавится при 3000 градусах. Чтобы сделать проволоку из тантала или закалить материал, его не нужно нагревать до критических температур. Используется для изготовления элементов в радиоэлектронике (конденсаторы, пленочные резисторы). Популярен в ядерной промышленности.
  5. Рений. Материал, который ученые открыли позже остальных. Найти его можно в медной и платиновой руде. Используется на промышленном производстве, как легирующая добавка.

К материалам с высокими температурами плавления относится и хром. Благодаря своим уникальным характеристикам он применяется в различных сферах промышленности. Обладает повышенной устойчивостью к критическим температурам и коррозийным процессам. Однако стоит учитывать его хрупкость.

Свойства

Чтобы понимать, где лучше использовать материал, нужно знать свойства тугоплавких металлов. Из них изготавливаются детали для промышленного оборудования, техники и электроники. Характеристики тяжелых тугоплавких металлов будут описаны ниже.

Физические свойства

Характеристики:

  1. Плотность — до 10000 кг/м3. У вольфрама этот показатель достигает 19000 кг/м3.
  2. Средняя температура плавления — 2500 градусов по Цельсию. Самая высокая температура плавления металла у вольфрама — 3390 градусов.
  3. Удельная теплоёмкость — 400 Дж.

Тугоплавкие предметы не выдерживают ударов и падений.

Химические свойства

Химические свойства:

  1. Это твердые вещества, обладающие высокой химической активностью.
  2. Прочная межатомная структура.
  3. Сопротивляемость длительному воздействию кислот и щелочей.
  4. Высокий показатель парамагнитности.

Эти материалы имеют некоторые недостатки. Главным из них является трудный процесс обработки и изготовления продукции из него.

Применение

Изначально тугоплавкие металлы использовались при изготовлении конденсаторов и транзисторов для радиоэлектроники. Количество их сфер применения увеличилось только к середине 20 века. Промышленной комплекс расширился до изготовления деталей для станков, автомобилей, самолётов и ракет.

Сплавы, выдерживающие воздействие критических температур, начали использоваться для изготовления посуды. Тугоплавкие металлы применяются в процессе производства строительных и соединительных материалов. Из них делают детали для бытовых приборов и электроники.

Самым тугоплавким считается вольфрам. Его температура плавления в 3390 градусов превышает показатели других материалов. Однако нельзя забывать про то, что при падении вольфрамовой детали с высоты, она треснет или разобьётся на отдельные части.

Вольфрам — Самый ТУГОПЛАВКИЙ Металл На ЗЕМЛЕ!
Остальные материалы с высоким показателем плавления, немногим отличаются от вольфрама. Используются в машиностроении, кораблестроении, ядерной энергетики, изготовлении промышленного оборудования.

Их разработка и исследование продолжается и по сей день.

Какой металл считается самым тугоплавким Ссылка на основную публикацию

Наиболее тугоплавкий металл. Характеристика металлов

Самый тугоплавкий металл в мире

Металлы — это самый распространенный материал (наряду с пластмассами и стеклом), который применяется людьми с древних времен. Уже тогда человеку была известна характеристика металлов, он с выгодой использовал все их свойства для создания прекрасных произведений искусства, посуды, предметов быта, сооружений.

Одной из главных черт при рассмотрении этих веществ является их твердость и тугоплавкость. Именно эти качества позволяют определять область использования того или иного металла. Поэтому рассмотрим все физические свойства и особое внимание уделим вопросам плавкости.

Физические свойства металлов

Характеристика металлов по физическим свойствам может быть выражена в виде четырех основных пунктов.

  1. Металлический блеск — все имеют примерно одинаковый серебристо-белый красивый характерный блеск, кроме меди и золота. Они имеют красноватый и желтый отлив соответственно. Кальций — серебристо-голубой.
  2. Агрегатное состояние — все твердые при обычных условиях, кроме ртути, которая находится в виде жидкости.
  3. Электро- и теплопроводность — характерна для всех металлов, однако выражена в разной степени.
  4. Ковкость и пластичность — также общий для всех металлов параметр, который способен варьироваться в зависимости от конкретного представителя.
  5. Температура плавления и кипения — определяет, какой металл тугоплавкий, а какой легкоплавкий. Этот параметр разный для всех элементов.

Все физические свойства объясняются особым строением металлической кристаллической решетки. Ее пространственным расположением, формой и прочностью.

Легкоплавкие и тугоплавкие металлы

Данный параметр является очень важным, когда речь заходит об областях применения рассматриваемых веществ. Тугоплавкие металлы и сплавы — это основа машино- и кораблестроения, выплавки и литья многих важный изделий, получения качественного рабочего инструмента. Поэтому знание температур плавления и кипения играет основополагающую роль.

Характеризуя металлы по прочности, можно разделить их на твердые и хрупкие. Если же говорить о тугоплавкости, то здесь выделяют две основные группы:

  1. Легкоплавкие — это такие, которые способны менять агрегатное состояние при температурах ниже 1000 оС. Примерами могут служить: олово, свинец, ртуть, натрий, цезий, марганец, цинк, алюминий и другие.
  2. Тугоплавкими считаются те, чья температура плавления выше обозначенной величины. Их не так много, а на практике применяется еще меньше.

Таблица металлов, имеющих температуру плавления свыше 1000 оС, представлена ниже. Именно в ней и располагаются самые тугоплавкие представители.

Название металлаТемпература плавления, оСТемпература кипения, оС
Золото, Au1064.182856
Бериллий, Ве12872471
Кобальт, Со14952927
Хром, Cr19072671
Медь, Cu1084,622562
Железо, Fe15382861
Гафний, Hf22334603
Иридий, Ir24464428
Марганец, Mn12462061
Молибден, Мо26234639
Ниобий, Nb24774744
Никель, Ni14552913
Палладий, Pd1554,92963
Платина, Pt1768.43825
Рений, Re31865596
Родий, Rh19643695
Рутений, Ru23344150
Тантал, Та30175458
Технеций, Тс21574265
Торий, Th17504788
Титан, Ti16683287
Ванадий, V19103407
Вольфрам, W34225555
Цирконий, Zr18554409

Данная таблица металлов включает в себя всех представителей, чья температура плавления выше 1000 оС. Однако на практике многие из них не применяются по различным причинам. Например, из-за экономической выгоды или вследствие радиоактивности, слишком высокой степени хрупкости, подверженности коррозионному воздействию.

Также из данных таблицы очевидно, что самый тугоплавкий металл в мире — это вольфрам. Наименьший показатель у золота. При работе с металлами важное значение имеет мягкость. Поэтому многие из обозначенных выше также не используются в технических целях.

Наиболее тугоплавкий металл — вольфрам

В периодической системе располагается под порядковым номером 74. Название получил по фамилии известного физика Стивена Вольфрама. При обычных условиях представляет собой твердый тугоплавкий металл серебристо-белого цвета. Обладает ярко выраженным металлическим блеском. Химически практически инертен, в реакции вступает неохотно.

В природе содержится в виде минералов:

  • вольфрамит;
  • шеелит;
  • гюбнерит;
  • ферберит.

Учеными было доказано, что вольфрам — наиболее тугоплавкий металл из всех существующих. Однако существуют предположения о том, что сиборгий теоретически способен побить рекорд этого металла. Но он является радиоактивным элементом с очень коротким периодом существования. Поэтому доказать это пока невозможно.

При определенной температуре (свыше 1500 оС) вольфрам становится ковким и пластичным. Поэтому возможно изготовление тонкой проволоки на его основе. Это свойство используется для изготовления нитей накаливания в обычных бытовых электрических лампочках.

Как наиболее тугоплавкий металл, выдерживающий температуры больше 3400 оС, вольфрам применяется в следующих областях техники:

  • как электрод при аргонной сварке;
  • для получения кислотоустойчивых, износостойких и жаростойких сплавов;
  • в качестве нагревательного элемента;
  • в вакуумных трубках как нить накаливания и прочее.

Помимо металлического вольфрама, широко применяются в технике, науке и электронике его соединения.

Как самый тугоплавкий металл в мире он и соединения формирует с очень высококачественными характеристиками: прочные, устойчивые практически ко всем видам химического воздействия, не подвергающиеся коррозии, выдерживающие низкие и высокие температуры (победит, сульфид вольфрама, его монокристаллы и другие вещества).

Ниобий и его сплавы

Nb, или ниобий, — при обычных условиях серебристо-белый блестящий металл. Он также является тугоплавким, поскольку температура перехода в жидкое состояние для него составляет 2477 оС.

Именно это качество, а также сочетание низкой химической активности и сверхпроводимости позволяет ниобию становиться все более популярным в практической деятельности человека с каждым годом.

Сегодня этот металл используется в таких отраслях, как:

  • ракетостроение;
  • авиационная и космическая промышленность;
  • атомная энергетика;
  • химическое аппаратостроение;
  • радиотехника.

Этот металл сохраняет свои физические свойства даже при очень низких температурах. Изделия на его основе отличаются коррозионной устойчивостью, жаростойкостью, прочностью, отличной проводимостью.

Этот металл добавляют к алюминиевым материалам для повышения химической стойкости. Из него изготовляют катоды и аноды, им легируют цветные сплавы. Даже монеты в некоторых странах делают с содержанием ниобия.

Тантал

Металл, в свободном виде и при обычных условиях покрытый оксидной пленкой. Обладает набором физических свойств, которые позволяют ему быть широко распространенным и очень важным для человека. Его основные характеристики следующие:

  1. При температуре свыше 1000 оС становится сверхпроводником.
  2. Это наиболее тугоплавкий металл после вольфрама и рения. Температура плавления составляет 3017 оС.
  3. Прекрасно поглощает газы.
  4. С ним легко работать, так как он прокатывается в пласты, фольгу и проволоку без особого труда.
  5. Обладает хорошей твердостью и не хрупкий, сохраняет пластичность.
  6. Очень устойчив к воздействию химических агентов (не растворяется даже в царской водке).

Благодаря таким характеристикам сумел завоевать популярность как основа для многих жаропрочных и кислотоустойчивых, антикоррозионных сплавов. Его многочисленные соединения находят применение в ядерной физике, электронике, приборах вычислительного плана. Используются как сверхпроводники. Раньше тантал использовался как элемент в лампах накаливания. Сейчас его место занял вольфрам.

Хром и его сплавы

Один из самых твердых металлов, в естественном виде голубовато-белой окраски. Его температура плавления ниже, чем у рассмотренных до сих пор элементов, и составляет 1907 оС. Однако он все равно используется в технике и промышленности повсеместно, так как хорошо поддается механическим воздействиям, обрабатывается и формуется.

Особенно ценен хром в качестве напылителя. Его наносят на изделия для придания им красивого блеска, защиты от коррозии и повышения износостойкости. Процесс называется хромированием.

Сплавы хрома очень популярны. Ведь даже небольшое количество этого металла в сплаве значительно увеличивает твердость и устойчивость последнего к воздействиям.

Цирконий

Один из самых дорогих металлов, поэтому применение его в технических целях затруднено. Однако физические характеристики делают его просто незаменимым во многих других отраслях.

При обычных условиях это красивый серебристо-белый металл. Обладает достаточно высокой температурой плавления — 1855 оС. Имеет хорошую твердость, устойчивость к коррозии, так как химически не активен.

Также отличается великолепной биологической совместимостью с кожей человека и всего организма в целом. Это делает его ценным металлом для использования в медицине (инструменты, протезы и так далее).

Основные области применения циркония и его соединений, в том числе сплавов, следующие:

Из циркония и сплавов на его основе изготавливаются даже украшения, способные влиять на улучшение состояния здоровья человека.

Молибден

Если выяснять, какой металл самый тугоплавкий, то, помимо обозначенного вольфрама, можно назвать и молибден. Его температура плавления составляет 2623 оС. При этом он достаточно твердый, пластичный и поддающийся обработке.

Используется он в основном не в чистом виде, а как составной компонент сплавов. Они, благодаря присутствию молибдена, значительно укрепляются в износостойкости, жаропрочности и антикоррозийности.

Некоторые соединения молибдена используют как технические смазки. Также этот металл является легирующим материалом, одновременно влияющим и на прочность, и на антикоррозийность, что встречается очень редко.

Ванадий

Серый металл с серебристым блеском. Обладает достаточно высоким показателем плавкости (1920 оС). Используется в основном как катализатор во многих процессах, благодаря своей инертности. Применяется в энергетике как химический источник тока, в производствах неорганических кислот. Основное значение имеет не чистый металл, а именно некоторые его соединения.

Рений и сплавы на его основе

Какой металл самый тугоплавкий после вольфрама? Это рений. Его показатель плавкости составляет 3186 оС. По прочности превосходит и вольфрам, и молибден. Пластичность его не слишком высока. Спрос на рений очень велик, а вот добыча составляет сложности. Вследствие этого он является самым дорогим металлом из существующих на сегодняшний день.

Применяется для изготовления:

  • реактивных двигателей;
  • термопар;
  • нитей накаливания для спектрометров и прочих устройств;
  • как катализатор при нефтепереработке.

Все области применения дорогостоящие, поэтому он используется только в случае крайней необходимости, когда заменить чем-либо другим возможности нет.

Титановые сплавы

Титан — это очень легкий металл серебристо-белого цвета, который находит широкое применение в металлургической промышленности и металлообработке. Может взорваться при нахождении в мелкодисперсном состоянии, поэтому является пожароопасным.

Применяется в авиа- и ракетостроении, при производстве кораблей. Широко используется в медицине благодаря биологической совместимости с организмом (протезы, пирсинги, имплантаты и прочее).

Тугоплавкие металлы — характеристики, свойства и применение

Самый тугоплавкий металл в мире

Еще с конца 19 века были известны тугоплавкие металлы. Тогда им не нашлось применения. Единственная отрасль, где их использовали, была электротехника и то в очень ограниченных количествах.

Но все резко поменялось с развитием сверхзвуковой авиации и ракетной техники в 50-е года прошлого столетия.

Производству потребовались новые материалы, способные выдерживать значительные нагрузки в условиях температур свыше 1000 ºC. 

Список и характеристики тугоплавких металлов

Тугоплавкость характеризуется повышенным значением температуры перехода из твердого состояния в жидкую фазу. Металлы, плавление которых осуществляется при 1875 ºC и выше, относят к группе тугоплавких металлов. По порядку возрастания температуры плавки сюда входят следующие их виды:

  • Ванадий
  • Хром
  • Родий
  • Гафний
  • Рутений
  • Вольфрам
  • Иридий
  • Тантал
  • Молибден
  • Осмий
  • Рений
  • Ниобий.

Современное производство по количеству месторождений и уровню добычи удовлетворяют только вольфрам, молибден, ванадий и хром. Рутений, иридий, родий и осмий встречаются в естественных условиях довольно редко. Их годовое производство не превышает 1,6 тонны.

Жаропрочные металлы обладают следующими основными недостатками:

  • Повышенная хладноломкость. Особенно она выражена у вольфрама, молибдена и хрома. Температура перехода у металла от вязкого состояния к хрупкому чуть выше 100 ºC, что создает неудобства при их обработке давлением.
  • Неустойчивость к окислению. Из-за этого при температуре свыше 1000 ºC тугоплавкие металлы применяются только с предварительным нанесением на их поверхность гальванических покрытий. Хром наиболее устойчив к процессам окисления, но как тугоплавкий металл он имеет самую низкую температуру плавления.

К наиболее перспективным тугоплавким металлам относят ниобий и молибден. Это связано с их распространённостью в природе, а, следовательно, и низкой стоимостью в сравнении с другими элементами данной группы.

Помимо этого, ниобий зарекомендовал себя как металл с относительно низкой плотностью, повышенной технологичностью и довольно высокой тугоплавкостью. Молибден ценен, в первую очередь, своей удельной прочностью и жаростойкостью.

Самый тугоплавкий металл встречаемый в природе — вольфрам. Его механические характеристики не падают при температуре окружающей среды свыше 1800 ºC. Но перечисленные выше недостатки плюс повышенная плотность ограничивают его область использования в производстве. Как чистый металл он применяется все реже и реже. Зато увеличивается ценность вольфрама как легирующего компонента.

Физико-механические свойства

Металлы с высокой температурой плавления (тугоплавкие) являются переходными элементами. Согласно таблице Менделеева выделяют 2 их разновидности:

  • Подгруппа 5A – тантал, ванадий и ниобий.
  • Подгруппа 6A – вольфрам, хром и молибден.

Наименьшей плотностью обладает ванадий – 6100 кгм3, наибольшей вольфрам – 19300 кгм3. Удельный вес остальных металлов находится в рамках этих значений. Эти металлы отличаются малым коэффициентом линейного расширения, пониженной упругостью и теплопроводностью.

Данные металлы плохо проводят электрический ток, но обладает таким качеством как сверхпроводимость. Температура сверхпроводящего режима составляет 0,05-9 К исходя из вида металла.

Абсолютно все тугоплавкие металлы отличаются повышенной пластичностью в комнатных условиях. Вольфрам и молибден помимо этого выделяются на фоне остальных металлов более высокой жаропрочностью.

Коррозионная стойкость

Жаропрочным металлам свойственна высокая стойкость к большинству видов агрессивных сред. Сопротивление коррозии элементов 5A подгрупп увеличивается от ванадия к танталу. Как пример, при 25 ºC ванадий растворяется в царской водке, между тем как ниобий полностью инертен по отношению к данной кислоте.

Тантал, ванадий и ниобий отличаются устойчивостью к воздействию расплавленных щелочных металлов. При условии отсутствия в их составе кислорода, которые значительно усиливает интенсивность протекания химической реакции.

Молибден, хром и вольфрам имеют большую сопротивляемость к коррозии. Так азотная кислота, которая активно растворяет ванадий, значительно менее воздействует на молибден. При температуре 20 ºC данная реакция вообще полностью останавливается.

Все тугоплавкие металлы охотно вступают в химическую связь с газами. Поглощение водорода из окружающей среды ниобием осуществляется при 250 ºC. Тантал при 500 ºC. Единственный способ остановить эти процессы – проведение вакуумного отжига при 1000 ºC. Стоит заметить, что вольфрам, хром и молибден куда менее склонны к взаимодействию с газами.

Как уже было сказано ранее, лишь хром отличается сопротивляемостью к окислению. Данное свойство обусловлено его способностью образовывать твердую пленку оксида хрома на своей поверхности. Растворение кислорода хромом происходит только при 700 С. У остальных тугоплавких металлов процессы окисления начинаются ориентировочно при 550 ºC.

Хладноломкость

Распространению использования жаропрочных металлов в производстве мешает обладание ими повышенной склонности к хладноломкости. Это означает, что при падении температуры ниже определенного уровня происходит резкое возрастание хрупкости металла. Для ванадия такой температурой служит отметка в -195 ºC, для ниобия -120 ºC, а вольфрама +330 ºC.

Наличие хладноломкости жаропрочными металлами обусловлено содержанием примесями в их составе. Молибден особой чистоты (99,995%) сохраняет повышенные пластические свойства вплоть до температуры жидкого азота. Но внедрение всего 0,1% кислорода сдвигает точку хладноломкости к -20 С.

Области применения

До середины 40-х годов тугоплавкие металлы использовались только как легирующие элементы для улучшения механических характеристик стальных цветных сплавов на основе меди и никеля в электропромышленности. Соединения молибдена и вольфрама применялись также в производстве твердых сплавов.

Техническая революция, связанная с активным развитием авиации, ядерной промышленности и ракетостроения, нашла новые способы использования тугоплавких металлов. Вот неполный перечень новых сфер применения:

  • Производство тепловых экранов головного узла и каркасов ракет.
  • Конструкционный материал для сверхзвуковых самолётов.
  • Ниобий служит материалом сотовой панели космических кораблей. А в ракетостроении его используют в качестве теплообменников.
  • Узлы термореактивного и ракетного двигателя: сопла, хвостовые юбки, лопатки турбин, заслонки форсунок.
  • Ванадий является основой для изготовления тонкостенных трубок тепловыделяющих элементов термоядерного реактора в ядерной промышленности.
  • Вольфрам применяется как нить накаливания электроламп.
  • Молибден все шире и шире используется в производстве электродов, применяемых для плавки стекла. Помимо этого, молибден — металл, используемый для производства форм литья под давлением.
  • Производство инструмента для горячей обработки деталей.

Самый тугоплавкий металл на земле

Самый тугоплавкий металл в мире

Любознательных людей наверняка интересует вопрос, какой металл самый тугоплавкий? Прежде чем дать на него ответ, стоит разобраться с сами понятием тугоплавкости.

Все известные науки металлы имеют разную температуру плавления в связи с различной степенью устойчивости связей между атомами в кристаллической решетке.

Чем слабее эта связь, тем меньшая температура требуется, чтобы ее разорвать.

Самые тугоплавкие металлы в мире используются в чистом виде или в составе сплавов для производства деталей, которые работают в экстремальных термических условиях.

Они позволяют эффективно противостоять высоким температурам и значительно продляют эксплуатационный период агрегатов.

Но стойкость металлов данной группы к термическому воздействию заставляет металлургов прибегать к нестандартным методам их производства.

Какой металл самый тугоплавкий?

Самый тугоплавкий металл на Земле был открыт в 1781 году шведским ученым Карлом Вильгельмом Шееле. Новый материал получил название вольфрам. Шееле удалось синтезировать триокись вольфрама путем растворения руды в азотной кислоте.

Чистый металл был выделен двумя годами позже испанскими химиками Фаусто Фермином и Хуаном Хосе де Элюар. Новый элемент не сразу получил признание и был взят на вооружение промышленниками.

Дело в том, что технологии того времени не позволяли обрабатывать столь тугоплавкое вещество, поэтому большинство современников не придали особого значения научному открытию.

Вольфрам был оценен гораздо позже. На сегодняшний день его сплавы используются при производстве термостойких деталей для различных отраслей промышленности. Нить накаливания в газоразрядных бытовых лампах также изготавливается из вольфрама.

Также он применяется в аэрокосмической промышленности для производства ракетных сопел, используется в качестве многоразовых электродов в газодуговой сварке.

Кроме тугоплавкости вольфрам также обладает высокой плотностью, что позволяет использовать его для изготовления высококачественных клюшек для гольфа.

Соединения вольфрама с неметаллами также широко применяется в промышленности.

Так сульфид используется в качестве термостойкой смазки, способной переносить температуры до 500 градусов по Цельсию, карбид служит для изготовления резцов, абразивных дисков и сверл, способных обрабатывать самые твердые вещества и переносить высокие температуры нагрева. Рассмотрим, наконец, промышленное получение вольфрама. Самый тугоплавкий металл имеет температуру плавления 3422 градуса по Цельсию.

Как получают вольфрам?

В природе чистый вольфрам не встречается. Он входит в состав горных пород в виде триоксида, а также вольфрамитов железа, марганца и кальция, реже меди или свинца. По оценкам ученых содержание вольфрама в земной коре в среднем составляет 1,3 грамма на одну тонну.

Это достаточно редкий элемент по сравнению с другими видами металлов. вольфрама в руде после добычи обычно не превышает 2%.

Поэтому добытое сырье отправляется на обогатительные фабрики, где методом магнитной или электростатической сепарации массовая доля металла доводится до отметки 55-60%.

Процесс его получения разделяется на технологические этапы. На первом этапе выделяют чистый триоксид из добытой руды. Для этого используют метод термического разложения.

При температурах от 500 до 800 градусов по Цельсию все лишние элементы расплавляются, а тугоплавкий вольфрам в виде оксида легко можно собрать из расплава.

На выходе получается сырье с содержанием оксида шестивалентного вольфрама на уровне 99%.

Полученное соединение тщательно измельчают и проводят восстановительную реакцию в присутствии водорода при температуре 700 градусов по Цельсию. Это позволяет выделить чистый металл в виде порошка.

Далее его спрессовывают под высоким давлением и спекают в водородной среде при температурах 1200-1300 градусов по Цельсию.

После этого полученная масса отправляется в электрическую плавильную печь, где под воздействием тока нагревается до температуры свыше 3000 градусов. Так вольфрам переходит в расплавленное состояние.

Для окончательной очистки от примесей и получения монокристаллической структурной решетки используется метод зонной плавки.

Он подразумевает, что в определенный момент времени расплавленной находится только некоторая зона из общей площади металла.

Постепенно двигаясь, эта зона перераспределяет примеси, в результате чего в конечном итоге они скапливаются в одном месте и их легко можно удалить из структуры сплава.

Готовый вольфрам поступает на склад в виде штабиков или слитков, предназначенных для последующего производства нужной продукции. Для получения сплавов вольфрама все составные элементы измельчают и смешивают в виде порошка в необходимых пропорциях. Далее производится спекание и плавка в электрической печи.

В результате применения различных обработок свойства стали могут меняться. Благодаря полиморфмизму, который способствует изменению кристаллической решетки материала в процессе нагревания или охлаждения, получение необходимой струтуры стали становится…
Температура изгтотовления различных конструкций из алюминиевых сплавов, как правило, не превышает 350 градусов. Это обусловлено свойствами алюминия — при длительной выдержке таких сплавов, как авиаль или…
Не удивительно, что многие считают самым дорогим металлом в мире золото. Это драгоценный металл, знакомый каждому, имеет высокую рыночную стоимость, однако не входит даже в тройку самых дорогих металлов. Стоит отметить, что цены на природные драгоценные металлы и металлы, полученные в лабораториях…
Необходимость идентификации сталей и сплавов была обусловлена их значичтельным количеством, однако даже на сегодняшний день производители металлопроката не могут предоставить единую систему марок сталей, что порождает ряд трудностей для…
Кстати, долгое время титан не использовался.Лишь в 1925 г., после того, как ученым удалось получить чистое вещество, самый твердый металл оказался в центре внимания. По оценкам ученых суммарные мировые запасы титана на сегодняшний день составляют около 730 миллионов тонн. При нынешних темпах добычи ископаемого сырья хватит…
Изготавливают жаропрочные стали и сплавы на основе железа, добавляя и другие мтеаллы. К примеру, благодаря наличию в составе хрома и никеля материал способен противостоять воздействию высоких температур. Если рассматривать процентное соотношение…

Тугоплавкие металлы — список, применение тугоплавких металлов

Самый тугоплавкий металл в мире

Металлы — это самый распространенный материал (наряду с пластмассами и стеклом), который применяется людьми с древних времен. Уже тогда человеку была известна характеристика металлов, он с выгодой использовал все их свойства для создания прекрасных произведений искусства, посуды, предметов быта, сооружений.

Одной из главных черт при рассмотрении этих веществ является их твердость и тугоплавкость. Именно эти качества позволяют определять область использования того или иного металла. Поэтому рассмотрим все физические свойства и особое внимание уделим вопросам плавкости.

2.2.5. Сверхпроводящие металлы и сплавы

Сверхпроводимость — это состояние вещества, характеризуемое отсутствием электрического сопротивления. Сверхпроводимость наблюдается у ряда металлов и сплавов при температурах, близких к абсолютному нулю. Температура перехода в сверхпрово-

дящее состояние называется критической температурой сверхпроводимости — Т св .

При температуре ниже Т св электрический ток, наведенный в сверхпроводящем контуре, будет циркулировать бесконечно долго, не убывая, при условии поддержания низкой температуры. Удель-

ное сопротивление материала в сверхпроводящем состоянии составляет порядка 10 -25 Ом·м, что в 10 17 раз меньше, чем у меди.

Физическая природа сверхпроводимости. Впервые явление сверхпроводимости было обнаружено у ртути ( Т св = 4,2 К) голландским физиком Камерлинком-Онессом в 1911 г.

Современная теория сверхпроводимости, основанная на квантовых представлениях, была предложена в 1957 г. американскими учеными Бардиным, Купером и Шриффером.

Значительный вклад в развитие теории сверхпроводимости внесли работы советского академика Н.Н.Боголюбова.

В металле свободные электроны, движущиеся в среде положительно заряженных ионов, взаимодействуют с тепловыми колебаниями решетки, обмениваясь с ней квантами тепловой энергии — фононами, при этом электроны могут поглощать или отдавать энергию, т.е.

изменять свой импульс. Обмен фононами между электронами при участии решетки происходит непрерывно.

В результате обменного фононного взаимодействия пара электронов с разными импульсами и антипараллельными спинами испытывают взаимное притяжение и образуют так называемую куперовскую пару .

Рассмотрим упрощенную схему (рис. 9). Электрон 1, движущийся между ионами, притягивает ближайшие ионы, создавая по траектории движения локальную зону повышенной плотности положительного заряда.

Электрон 2, движущийся вслед за первым, притягивается этой зоной. В результате, косвенным образом, через решетку, между электронами возникают силы притяжения.

Силы притяжения невелики, парные образования слабо локализованы в пространстве, они постоянно распадаются и создаются, образуя электронный конденсат.

При низких температурах ( Т св ) энергия тепловых колебаний решетки чрезвычайно мала и спаренные электроны не рассеиваются на дефектах структуры. Особенность куперовских пар — их импульсная упорядоченность.

Электронные волны, описывающие движение пар, имеют одинаковую длину и фазу.

Фактически движение всех электронных пар можно рассматривать как распространение одной электронной волны, которая не рассеивается решеткой, «обтекает» дефекты структуры.

Рис. 9. Схема образования электронных пар в сверхпроводнике

При температуре абсолютного нуля все электроны, расположенные вблизи уровня Ферми, связаны в пары. При повышении температуры часть электронных пар распадается.

Неспаренные электроны переходят с основных уровней на возбужденные, и их движение затрудняется рассеянием на дефектах структуры.

При температуре Т св происходит полный разрыв всех куперовских пар, и состояние сверхпроводимости исчезает.

Читать также: Ресанта полуавтомат саипа 165 инверторный отзывы

Сверхпроводники обладают специфическими магнитными свойствами. Поскольку электроны с противоположно направленными спинами связаны в пары, результирующий спиновый момент пары равен нулю, и сверхпроводник становится идеальным диамагнетиком. Как всякие диамагнетики, сверхпроводники выталкиваются из магнитного поля.

Внешнее магнитное поле совершенно не проникает в толщину образца, затухая в тончайшем поверхностном слое (10 -7 …10 -8 м). Эффект выталкивания выражен столь сильно, что с помощью магнитного поля можно удерживать постоянный магнит над кольцом из сверхпроводящего материала.

Однако состояние сверхпроводимости может быть разрушено, если напряженность магнитного поля превысит некоторое критическое значение Н св .

В настоящее время известно более 30 металлов, обладающих сверхпроводимостью при криогенных температурах, и более 1000

сверхпроводниковых сплавов и химических соединений различных элементов. Параметры некоторых сверхпроводниковых материалов представлены в табл. 5.

Металлы — это самый распространенный материал (наряду с пластмассами и стеклом), который применяется людьми с древних времен. Уже тогда человеку была известна характеристика металлов, он с выгодой использовал все их свойства для создания прекрасных произведений искусства, посуды, предметов быта, сооружений.

Одной из главных черт при рассмотрении этих веществ является их твердость и тугоплавкость. Именно эти качества позволяют определять область использования того или иного металла. Поэтому рассмотрим все физические свойства и особое внимание уделим вопросам плавкости.

Рекорды для неорганических веществ

Самым сильным стабильным окислителем

Наиболее тугоплавкий металл. Характеристика металлов

Металлы — это самый распространенный материал (наряду с пластмассами и стеклом), который применяется людьми с древних времен. Уже тогда человеку была известна характеристика металлов, он с выгодой использовал все их свойства для создания прекрасных произведений искусства, посуды, предметов быта, сооружений.

Одной из главных черт при рассмотрении этих веществ является их твердость и тугоплавкость. Именно эти качества позволяют определять область использования того или иного металла. Поэтому рассмотрим все физические свойства и особое внимание уделим вопросам плавкости.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.