Влияние алюминия на свойства стали

Влияние алюминия на свойства стали

Влияние алюминия на свойства стали

Легированная сталь — это сталь, содержащая специальные легирующие добавки, которые позволяют в значительной степени менять ряд ее механических и физических свойств. В данной статье мы разберемся, что из себя представляет классификация легированных сталей, а также рассмотрим их маркировку.

Круглый прокат из легированной стали

Классификация легированных сталей

По содержанию в составе стали углерода идет разделение на:

В зависимости от общего количества в их составе легирующих элементов, которые содержит легированная сталь, она может принадлежать к одной из трех категорий:

  1. низколегированная (не более 2,5%);
  2. среднелегированная (не более 10%);
  3. высоколегированная (от 10% до 50%).

Свойства, которыми обладают легированные стали, определяет и их внутренняя структура. Поэтому признаку классификация легированных сталей подразумевает разделение на следующие классы:

  1. доэвтектоидные — в составе присутствует избыточный феррит;
  2. эвтектоидные — сталь имеет перлитную структуру;
  3. заэвтектоидные — в их структуре присутствует вторичные карбиды;
  4. ледебуритные — в структуре присутствует первичные карбиды.

По своему практическому применению легированные конструкционные стали могут быть: конструкционные (подразделяются на машиностроительные или строительные), инструментальные, а также стали с особыми свойствами.

Назначение конструкционных легированных сталей:

  • Машиностроительные — служат для производства деталей всевозможных механизмов, корпусных конструкции и тому подобного. Отличаются тем, что в подавляющем большинстве случаев проходят термическую обработку.
  • Строительные — чаще всего используются при изготовлении сварных металлоконструкций и термической обработке подвергаются в редких случаях.

Классификация машиностроительных легированных сталей выглядит следующим образом.

  • Жаропрочные стали активно используются для производства деталей, предназначенных для работы в сфере энергетики (например, комплектующие паровых турбин), а также из них делают особо ответственный крепеж. В качестве легирующих добавок в них используют хром, молибден, ванадий. Жаропрочные относятся к среднеуглеродистым, среднелегированным, перлитным сталям.
  • Улучшаемые (из категорий среднеуглеродистых, низко- и среднелегированных) стали, при производстве которых используют закалку, применяются для изготовления сильно нагруженных деталей, испытывающих нагрузки переменного характера. Отличаются чувствительностью к концентрации напряжения в рабочей детали.
  • Цементуемые (из категорий низкоуглеродистых, низко- и среднелегированных) стали, как можно понять по названию, подвергаются цементации и следующей после нее закалке. Их применяют для изготовления всевозможных шестерен, валов и других похожих по назначению деталей.

Зависимость толщины цементованного слоя от температуры и времени обработки

Классификация строительных легированных сталей подразумевает их разделение на следующие виды:

  • Массовая — низколегированные стали в виде труб, фасонного и листового проката.
  • Мостостроительная — для автомобильных и ж/д мостов.
  • Судостроительная хладостойкая, нормальная и повышенной прочности — хорошо противостоит хрупкому разрушению.
  • Судостроительная хладостойкая высокой прочности — для сварных конструкций, которым предстоит работать в условиях низких температур.
  • Для горячей воды и пара — допускается рабочая температура до 600 градусов.
  • Низкоопущенные высокой прочности — применяются в авиации, чувствительны к концентрации напряжений.
  • Повышенной прочности с применением карбонитритного упрочнения, создающим мелкозернистую структуру стали.
  • Высокой прочности с применением карбонитритного упрочнения.
  • Упрочненные прокаткой при температуре 700-850 градусов.

Применение инструментальных легированных сталей

Инструментальная легированная сталь широко используется при производстве разнообразного инструмента.

Но помимо явного превосходства над углеродистой сталью в плане твердости и прочности, у легированной стали есть и слабая сторона — более высокая хрупкость.

Поэтому для инструмента, который активно подвергается ударным нагрузкам, такие стали не всегда подходят.

Тем не менее при производстве огромного перечня режущего, ударно-штампового, измерительного и прочего инструмента именно инструментальные легированные стали остаются незаменимыми.

Отдельно можно отметить быстрорежущую сталь, отличительными особенностями которой являются крайне высокая твердость и красностойкость до температуры 600 градусов.

Такая сталь способна выдерживать нагрев при высокой скорости резания, что позволяет увеличить скорость работы металлообрабатывающего оборудования и продлить срок его службы.

К отдельной категории относятся легированные конструкционные стали, наделенные особыми свойствами: нержавеющие, с улучшенными электрическими и магнитными характеристиками.

От того, какие элементы, а также в каких количествах преимущественно содержатся в них, они могут быть хромистыми, никелевыми, хромоникельмолибденовыми.

Также они делятся на трех-, четырех- и более компонентные по числу содержащихся в них легирующих добавок.

Легирующие элементы и их влияние на свойства сталей

Маркировка легированных сталей указывает на то, какие добавки в ней содержатся, а также на их количественное значение. Но также важно знать и то, какое именно влияние на свойства металла оказывает каждый из этих элементов в отдельности.

Хром

Добавка хрома увеличивает коррозионную стойкость, повышает прочность и твердость, является основным компонентом при создании нержавеющей стали.

Никель

Добавление никеля повышает пластичность, вязкость стали и коррозионную стойкость.

Титан

Титан уменьшает зернистость внутренней структуры, повышая прочность и плотность, улучшает обрабатываемость и коррозионную стойкость.

Ванадий

Присутствие ванадия уменьшает зернистость внутренней структуры, что повышает текучесть и порог прочности на разрыв.

Молибден

Добавка молибдена дает возможность улучшить прокаливаемость, повысить коррозионную устойчивость и снизить хрупкость.

Вольфрам

Вольфрам повышает твердость, не дает зернам увеличиваться при нагреве и снижает хрупкость при отпуске.

Кремний

При содержании до 1-15% кремний повышает прочность, сохраняя вязкость.

При увеличении процента содержания кремния повышается магнитопроницаемость и электросопротивление.

Кобальт

Введение кобальта увеличивает ударопрочность и жаропрочность.

Алюминий

Добавление алюминия способствует повышению окалиностойкости.

Примеси в сталях: вредные и полезные

Влияние алюминия на свойства стали

Марганец, кремний, алюминий, серу и фосфор относят к постоянным примесям. Алюминий вместе с марганцем и кремнием применяется в качестве раскислителя и поэтому в малых количествах они всегда есть в раскисленных сталях. Руды железа, а также топливо и флюсы всегда содержат определенное количество фосфора и серы, которые остаются в чугуне, а затем переходят и в сталь.

Азот называют скрытой примесью – он поступает в сталь в основном из воздуха.

К случайным примесям относят медь, мышьяк, олово, цинк, сурьму, свинец и другие элементы. Они попадают в сталь с шихтой – с рудами из различных месторождений, а также из железного лома.

Все примеси – постоянные, скрытые и случайные – в разной степени являются неизбежными из-за технологии производства стали.

Так, спокойная сталь обычно содержит эти примеси в следующих пределах: 0,3-0,7 % марганца; 0,2-0,4 % кремния; 0,01-0,02 % алюминия; 0,01-0,05 % фосфора, 0,01-0,04 % серы, 0,-0,2 % меди.

В этих количествах эти элементы рассматривают как примеси, а в бóльших количествах, которые вносят в стали намеренно, их уже считают легирующими элементами.

Влияние фосфора на свойства сталей

Фосфор (Р) сегрегирует при затвердевании стали, но в меньшей степени, чем углерод и сера. Фосфор растворяется в феррите и за счет этого повышает прочность сталей. С увеличением содержания фосфора в сталях их пластичность и ударная вязкость снижается и повышается склонность к хладноломкости.

Растворимость фосфора при высокой температуре достигает 1,2 %. С понижением температуры растворимость фосфора в железе резко падает до 0,02-0,03 %. Такое количество фосфора характерно для для сталей, то есть весь фосфор обычно растворен в альфа-железе.

Фосфор имеет сильную тенденцию сегрегировать на границах зерен, что приводит к отпускной хрупкости легированных сталей, особенно в марганцевых, хромистых, магниево-кремниевых, хромоникелевых и хромомарганцевых сталях. Фосфор, кроме того, увеличивает упрочняемость сталей и замедляет, как и кремний, распад мартенсита в сталях.

Повышенное содержание фосфора часто задают в низколегированных сталях для улучшения их механической обработки, особенно автоматической.

В низколегированных конструкционных сталях с содержанием углерода около 0,1 % фосфор повышает прочность и сопротивление атмосферной коррозии.

В аустенитных хромоникелевых сталях добавки фосфора способствуют повышению предела текучести. В сильных окислителях наличие фосфора в аустенитных нержавеющих сталях может приводить к их коррозии по границам зерен. Это обусловлено явлением сегрегации фосфора по границам зерен.

Влияние серы на свойства сталей

серы (S) в высококачественных сталях не превышает 0,02-0,03 %. В сталях общего назначения допустимое содержание серы выше – 0,03-0,04 %. Специальной обработкой жидкой стали содержание серы в стали доводят до 0,005 %.

Сера не растворяется в железе, поэтому любое ее количество образует с железом сульфид железа FeS. Этот сульфид входит в состав эвтектики, которая образуется при 988 °С.

Повышенное содержание серы в сталях приводит к их красноломкости из-за низкоплавких сульфидных эвтектик, которые возникают по границам зерен. Явление красноломкости происходит при температуре 800 °С, то есть при температуре красного каления стали.

Сера оказывает вредное влияние на пластичность, ударную вязкость, свариваемость и качество поверхности сталей (особенно в сталях с низким содержанием углерода и марганца).

Сера имеет очень сильную склонность к сегрегации по границам зерен. Это приводит к снижению пластичности сталей в горячем состоянии. Однако серу в количестве от 0,08 до 0,33 % намеренно добавляют в стали для автоматической механической обработки. Известно, что присутствие серы повышает усталостную прочность подшипниковых сталей.

Присутствие в стали марганца уменьшает вредное влияние серы. В жидкой стали протекает реакция образования сульфида марганца. Этот сульфид плавится при 1620 °С – при температурах значительно более высоких, чем температура горячей обработки сталей. Сульфиды марганца пластичны при температурах горячей обработки сталей (800-1200°С) и поэтому легко деформируются.

Влияние алюминия на свойства сталей

Алюминий (Al) широко применяется для раскисления жидкой стали, а также для измельчения зерна стальных слитков. К вредному влиянию алюминия относят то, что он способствует графитизации сталей.

Хотя алюминий часто считают примесью, его активно применяют и как легирующий элемент. Поскольку алюминий образует с азотом твердые нитриды, он обычно бывает легирующим элементом в азотируемых сталях.

Алюминий повышает стойкость сталей к окалинообразованию, и поэтому его добавляют в теплостойкие стали и сплавы. В дисперсионно упрочняемых нержавеющих сталях алюминий применяют как легирующий элемент, ускоряющий реакцию дисперсионного выделения.

Алюминий повышает коррозионную стойкость низкоуглеродистых сталей. Из всех легирующих элементов алюминий является наиболее эффективным для контроля роста зерна при нагреве сталей под закалку.

Влияние азота на свойства сталей

Вредное влияние азота (N) заключается в том, что образуемые им довольно крупные, хрупкие неметаллические включения – нитриды – ухудшают свойства стали. Положительным свойством азота считают то, что он способен расширять аустенитную область диаграммы состояния сталей.

Азот стабилизирует аустенитную структуру и частично заменяет никель в аустенитных сталях. В низколегированные стали добавляют нитридообразующие элементы ванадий, ниобий и титан.

При контролируемой горячей обработке и охлаждении они образуют мелкие нитриды и карбонитриды, которые значительно повышают прочность стали.

Влияние меди на свойства сталей

Медь (Cu) имеет умеренную склонность к сегрегации. К вредному влиянию меди относят снижение хладноломкости стали. При повышенном содержании меди она отрицательно влияет качество поверхности стали при ее горячей обработке.

Однако при содержании более 0,20 % медь повышает ее стойкость к атмосферной коррозии, а также прочностные свойства легированных и низколегированных сталей.

Медь в количестве более 1 % повышает стойкость аустенитных нержавеющих сталей к воздействию серной и соляной кислот, а также их  стойкость к коррозии под напряжением.

Влияние олова на свойства сталей

Олово (Sn) уже в относительно малых количествах является вредным для сталей. Оно имеет очень сильную склонность сегрегировать к границам зерен и вызывать отпускную хрупкость в легированных сталях. Олово оказывает вредное влияние на качество поверхности непрерывнолитых слитков, а также может снижать горячую пластичность сталей в аустенитно-ферритной области диаграммы состояния.

Влияние сурьмы на свойства сталей

Сурьма (Sb) имеет сильную склонность сегрегировать при затвердевании стали и поэтому вредно влияет на качество поверхности непрерывнолитых стальных слитков. В твердом состоянии стали сурьма охотно сегрегирует к границам зерен и вызывает отпускную хрупкость легированных сталей.

Источники:Steel Heat Treatment: Metallurgy and Technologies, ed. G. E. Totten, 2006.

Гуляев А. П. Металловедение, 1986.

Легированные стали: классификация и маркировка

Влияние алюминия на свойства стали

Легированная сталь — это сталь, содержащая специальные легирующие добавки, которые позволяют в значительной степени менять ряд ее механических и физических свойств. В данной статье мы разберемся, что из себя представляет классификация легированных сталей, а также рассмотрим их маркировку.

Круглый прокат из легированной стали

Маркировка легированных сталей

К категории легированных относится большое разнообразие сталей, что и вызвало необходимость в систематизации их буквенно-цифрового обозначения.

Требования к их маркировке оговаривает ГОСТ 4543-71, согласно которому сплавы, наделенные особыми свойствами, обозначаются маркировкой, где на первой позиции стоит буква.

По этой букве как раз и можно определить, что сталь по своим свойствам относится к определенной группе.

Пример расшифровки маркировки легированной стали

Так, если маркировка легированных сталей начинается с букв «Ж», «Х» или «Е» — перед нами сплав нержавеющей, хромистой или магнитной группы. Сталь, которая относится к нержавеющей хромоникелевой группе, обозначается буквой «Я» в ее маркировке. Сплавы, относящиеся к категории шарикоподшипниковых и быстрорежущих инструментальных, обозначаются буквами «Ш» и «Р».

Стали, относящиеся к легированным, могут принадлежать к категории высококачественных, а также особо высококачественных. В таких случаях в конце их марки ставится буква «А» или «Ш» соответственно.

Стали, которые обладают обычным качеством, таких обозначений в своей маркировке не имеют. Специальное обозначение также имеют сплавы, которые получены прокатным методом.

В таком случае в маркировке присутствует буква «Н» (нагартованный прокат) или «ТО» (термически обработанный прокат).

Точный химический состав любой легированной стали можно посмотреть в нормативных документах и справочной литературе, но получить такую информацию позволяет и умение разбираться в ее маркировке.

Первая цифра позволяет понять, сколько углерода (в сотых долях процента) содержит легированная сталь.

После этой цифры в марке перечисляются буквенные обозначения легирующих элементов, которые содержатся дополнительно.

Обозначение легирующих элементов в маркировке стали

После каждой такой буквы проставляется количественное содержание указанного элемента. Выражается это содержание в целых долях. После буквы, обозначающей элемент, может не стоять никакой цифры. Означает это то, что его содержание в стали не превышает 1,5%.

Государственный стандарт 4543-71 регламентирует обозначение легирующих добавок, входящих в состав легированной стали: А — Азот, Б — Ниобий, В —Вольфрам, Г — Марганец, Д — Медь, К — Кобальт, М — Молибден, Н — Никель, П — Фосфор, Р — Бор, С — Кремний, Т — Титан, Ц — Цирконий, Ф — Ванадий, Х — Хром, Ю — Алюминий.

Использование легированных сталей

Сегодня сложно найти сферу жизни и деятельности, в которых бы не использовалась легированная сталь.

Из инструментальных и конструкционных сталей производится практически любой инструмент: резцы, фрезы, штампы, измерительные устройства, шестерни, пружины, подвески, растяжки и многое другое.

Нержавеющие легированные стали активно используются и в быту, из них изготавливают посуду, корпуса и другие элементы многих видов бытовой техники.

Легированные стали по причине их высокой стоимости используются только для производства самых ответственных конструкций и деталей, где изделия из других металлов просто не смогут выполнить возложенные на них задачи.

Влияние легирующих элементов на свойства стали. Виды, марки и назначение сталей

Влияние алюминия на свойства стали

Сталь – один из самых востребованных материалов в мире сегодня.

Без нее сложно представить любую существующую строительную площадку, машиностроительные предприятия, да и много других мест и вещей, которые нас окружают в повседневной жизни.

Вместе с тем, этот сплав железа с углеродом бывает достаточно различным, потому в данной статье будет рассмотрено влияние легирующих элементов на свойства стали, а также ее виды, марки и предназначение.

Общая информация

Сегодня многие марки стали широко применяются практически в любой сфере жизнедеятельности человека.

Это во многом объясняется тем, что в этом сплаве оптимально сочетается целый комплекс механических, физико-химических и технологических свойств, которые не имеют какие-либо другие материалы.

Процесс выплавки стали непрерывно совершенствуется и потому ее свойства и качество позволяют получить требуемые показатели работы получаемых в итоге механизмов, деталей и машин.

Классификация по назначению

Каждая сталь в зависимости от того, для чего она создана, в обязательном порядке может быть причислена в одну из следующих категорий:

  • Конструкционная.
  • Инструментальная.
  • Специального назначения с особыми свойствами.

Самый многочисленный класс – это конструкционные стали, разработанные для создания разнообразных строительных конструкций, приборов, машин. Конструкционные марки разделяются на улучшаемые, цементуемые, пружинно-рессорные, высокопрочные.

Инструментальные стали дифференцируют в зависимости от того, для какого инструмента они производятся: режущего, измерительного и т. д. Само собой, что влияние легирующих элементов на свойства стали этой группы также велико.

Специальные стали имеют свое разделение, которое предусматривает следующие группы:

  • Нержавеющие (они же коррозионностойкие).
  • Жаропрочные.
  • Жаростойкие.
  • Электротехнические.

Группы сталей по химическому составу

Классификацией озвучиваются стали в зависимости от образующих их химических элементов:

  • Углеродистые марки стали.
  • Легированные.

При этом обе эти группы дополнительно разделяются еще и по количеству содержащегося в них углерода на:

  • Низкоуглеродистые (карбона менее 0,3%).
  • Среднеуглеродистые (концентрация карбона равно 0,3 – 0,7 %).
  • Высокоуглеродистые (карбона более 0,7%).

Что такое легированная сталь?

Под этим определением следует понимать стали, в которых содержатся, параллельно с постоянными примесями, еще и добавки, внедряемые в структуру сплава, с целью увеличения механических свойств полученного в конечном счете материла.

Несколько слов о качестве стали

Этот параметр данного сплава подразумевает под собой совокупность свойств, которые, в свою очередь, обуславливаются непосредственно процессом его производства. К подобным характеристикам, которым подчиняются и легированные инструментальные стали, относятся:

  • Химический состав.
  • Однородность структуры.
  • Технологичность.
  • Механические свойства.

Качество любой стали напрямую зависит от того, сколько содержится в ней кислорода, водорода, азота, серы и фосфора. Также не последнюю роль играет и метод получения стали. Самым точным с точки зрения попадния в требуемый диапазон примесей является сопособ выплавки стали в электропечах.

Легированная сталь и изменение ее свойств

Легированная сталь, марки которой содержат в своей маркировке буквенные обозначения вводимых принудительно элементов, меняет свои свойства не только от этих сторонних веществ, но и также от их взаимного действия между собой.

Если рассматривать конкретно углерод, то по взаимодействию с ним легирующие элементы можно условно разделить на две большие группы:

  • Элементы, которые формируют с углеродом химическое соединение (карбид) – молибден, хром, ванадий, вольфрам, марганец.
  • Элементы, не создающие карбидов – кремний, алюминий, никель.

Стоит заметить, что стали, которые легируются карбидобразующими веществами, имеют очень высокую твёрдость и повышенное сопротивление износу.

Низколегированная сталь (марки: 20ХГС2, 09Г2, 12Г2СМФ, 12ХГН2МФБАЮ и другие). Особое место занимает сплав 13Х, который достаточно тверд для изготовления из него хирургического, гравировального, ювелирного оборудования, бритв.

Расшифровка

легирующих элементов в стали можно определить по ее маркировке. Каждая из таких вводимых в сплав составляющих имеет своё буквенное обозначение. Например:

  • Хром – Cr.
  • Ванадий –V.
  • Марганец –Mn.
  • Ниобий – Nb.
  • Вольфрам –W.
  • Титан – Ti.

Иногда в начале индекса марки стали стоят буквы. Каждая из них несет особый смысл.

В частности, буква «Р» означает, что сталь является быстрорежущей, «Ш» сигнализирует, что сталь шарикоподшипниковая, «А» – автоматная, «Э» – электротехническая и т. д.

Высококачественные стали имеют в своем цифро-буквенном обозначении в конце литеру «А», а особо качественные содержат в самом конце маркировки букву «Ш».

Воздействие легирующих элементов

В первую очередь следует сказать, что основополагающее влияние на свойства стали оказывает углерод. Именно этот элемент обеспечивает с повышением своей концентрации увеличение прочности и твердости при снижении вязкости и пластичности. Кроме того, повышенная концентрация углерода гарантирует ухудшение обрабатываемости резанием.

хрома в стали напрямую влияет на ее коррозионную стойкость. Этот химический элемент формирует на поверхности сплава в агрессивной окислительной среде тонкую защитную оксидную пленку. Однако для достижения такого эффекта в стали хрома должно быть не менее 11,7%.

Особого внимания заслуживает алюминий. Его применяют в процессе легирования стали для удаления кислорода и азота после ее продувки, дабы поспособствовать уменьшению старения сплава. Кроме того, алюминий значительно повышает ударную вязкость и текучесть, нейтрализует крайне вредное влияние фосфора.

Ванадий – это особый легирующий элемент, благодаря которому легированные инструментальные стали получают высокую твёрдость и прочность. При этом в сплаве уменьшается зерно и повышается плотность.

Легированная сталь, марки которой содержат вольфрам, наделена высокой твёрдостью и красностойкостью. Вольфрам хорош также и тем, что он полностью устраняет хрупкость во время запланированного отпуска сплава.

Для увеличения жаропрочности, магнитных свойств и сопротивления значительным ударным нагрузкам сталь легируют кобальтом. А вот одним из тех элементов, который не оказывает какого-либо существенного влияния на сталь, является кремний. Однако в тех марках стали, которые предназначены для сварных металлоконструкций, концентрация кремния должна быть обязательно в пределах 0,12-0,25 %.

Значительно повышает механические свойства стали магний. Его также используют в качестве десульфуратора в случае использования внедоменной десульфурации чугуна.

Низколегированная сталь (марки ее содержат легирующих элементов менее 2,5%) очень часто содержит марганец, что обеспечивает ей непременное увеличение твердости, износоустойчивости при сохранении оптимальной пластичности. Но при этом концентрация этого элемента должна быть более 1%, иначе не получится достигнуть указанных свойств.

Углеродистые марки стали, выплавляемые для различных масштабных строительных конструкций, содержат в себе медь, которая обеспечивает максимальные антикоррозионные свойства.

Для увеличения красностойкости, упругости, предела прочности при растяжении и стойкости к коррозии в сталь обязательно вводят молибден, который также еще и повышает сопротивление окислению металла при нагреве до высоких температурных показателей. В свою очередь церий и неодим применяются для снижения пористости сплава.

Рассматривая влияние легирующих элементов на свойства стали, нельзя обойти вниманием и никель. Данный металл позволяет стали получить превосходную прокаливаемость и прочность, повысить пластичность и ударопрочность и понизить предел хладноломкости.

Очень широко используется в качестве легирующей добавки и ниобий. Его концентрация, в 6-10 раз превышающая количество обязательно присутсвтующего углерода в сплаве, позволяет устранить межкристаллитную коррозию нержавеющей марки стали и предохраняет сварные швы от крайне нежелательного разрушения.

Титан позволяет получить самые оптимальные показатели прочности и пластичности, а также улучшить коррозионную стойкость. Те стали, которые содержит эту добавку, очень хорошо подвергаются обработке различным инструментом специального назначения на современных металлорежущих станках.

Введение в стальной сплав циркония дает возможность получить требуемую зернистость и при необходимости оказывать влияние именно на рост зерна.

Случайные примеси

Крайне нежелательными элементами, которые очень негативно сказываются на качестве стали, являются мышьяк, олово, сурьма. Их появление в сплаве всегда приводит к тому, сталь становится очень хрупкой по границам своих зерен, что особенно заметно при смотке стальных лент и в процессе отжига низкоуглеродистых марок сталей.

Заключение

В наше время влияние легирующих элементов на свойства стали довольно хорошо изучено. Специалисты тщательно провели анализ воздействия каждой добавки в сплаве.

Полученные теоретические знания позволяют металлургам уже на этапе оформления заказа сформировать принципиальную схему выплавки стали, определиться с технологией и количеством требуемых расходных материалов (руды, концентрата, окатышей, присадок и прочего).

Наиболее часто сталеплавильщики использую хром, ванадий, кобальт и другие легирующие элементы, которые являются достаточно дорогостоящими.

Какие изделия изготавливаются из сплава железа с алюминием

Влияние алюминия на свойства стали

Сплавы железа с алюминием обладают уникальными свойствами, позволяющими применять их для изготовления деталей, подверженных термическим воздействиям, окислению или коррозии. Их использование имеет узкую направленность — они ориентированы на промышленные сферы эксплуатации.

Сплав железа с алюминием

История открытия

Первые попытки применения сплавов алюминия и железа были предприняты Фарадеем в 1820 году. Были попытки использовать сплав алюминия в качестве легирующего элемента для получения высокопрочной стали, но они оказались неэффективными.

Тщательные исследования были возобновлены после 1918 года в СССР, Германии, Англии. Было показано, что при добавлении Al возрастают жаропрочные свойства чугуна. Образцы обладают повышенной прочностью, хрупкостью, стойко переносят контакт с кислыми средами, не склонны к образованию окалин.

Было обнаружено, что появление окалин зависит от толщины оксидной плёнки на образцах: чем она толще, однороднее, тем выше защита поверхности. Важно, чтобы окислы не формировали эвтектическую фазу и не подвергались возгонке, а их ионная проводимость была минимальной.

Условием жаростойкости образца являются потери с окалиной в пределах 2-10-³ – 4-10-³ г/см² /ч.

Множество проведённых исследований сплавов Fe и Al закончились определением их химических и физических свойств. Это связано с проблемами газового насыщения образцов, угаром алюминия, формированием внутренних оксидных плёнок, разрушением образцов при нормальных условиях.

Наиболее перспективными оказались сплавы с содержанием от 16 до 20% Al и 3% углерода, получившие название «чугаль». Именно их начали выплавлять в СССР.

Позже группа изобретателей во главе с З. Эмингером разработала технологию производства качественных отливок железоалюминиевых образцов. Благодаря этому были получены новые данные.

Состав и структура

Структура сплава алюминия с железом представляет собой пересыщенный раствор Al в α-Fe с упорядочением структуры FeAl (тип В2), наличием включений Fe3AlCx. Свойства определяются упорядочением альфа-фазы и пересыщением. Чтобы сформировать однородный состав, необходим отжиг при температуре выше упорядочения состава с последующим регулируемым охлаждением.

При количестве Al 8–14% формируется столбчатая матричная структура. В процессе отжига структура немного упорядочивается: включения длиной до 150 мкм находятся вдоль границы зёрен. Выделение включений происходит при охлаждении из твёрдой фазы.

Метастабильное состояние фазы определяется количеством включений. Отжиг позволяет их сократить до 2%. Чем больше в составе алюминия, тем больше создаётся негомогенных областей, в результате чего понижается микротвёрдость матрицы до 0,4 ГПа и износостойкость образца.

С увеличением скорости отжига при водяном или воздушном охлаждении количество карбидных включений снижается.

14-20% сплав алюминия с железом имеет также матричную структуру, но карбидная фаза обеднена по Al и структура FeAl не упорядочена. При отжиге на воздухе количество карбидных включений возрастает, за счёт чего повышаются свойства износостойкости и прочности. Если проводить охлаждение в воде, то такого эффекта не наблюдается и образец получается хрупким.

При повышенном содержания в сплаве Al от 20 до 30% карбидной фазы становится меньше, при охлаждении образцов данная фаза отсутствует в структуре или не более 3%. За счёт большого количества алюминия образец приобретает высокую прочность и пластичность. Воздушное охлаждение после отжига стимулирует образование твёрдых износостойких фаз.

Увеличение содержания алюминия в расплаве становится причиной формирования интерметаллида Fe4Al13, который не устраняется после отжига, а образец становится непригодным для какого-либо практического применения.

Для улучшения свойств расплава в состав вводятся следующие легирующие элементы:

  • 0,1–10% Cr;
  • 0,1–0,2% Nb;
  • 0,1–2,0% Si;
  • 0,1–5% B;
  • от 50 до 200 мг/кг Zr.

углерода — от 100 до 500 мг/кг.

Температура плавления

Характеристики и свойства

Сплавы железа и алюминия имеют следующие характеристики:

  • количество циклов термического нагрева до 240, в зависимости от химического состава;
  • предел прочности на растяжение 100 МПа;
  • отличные литейные свойства сплава;
  • допустимо применение легирующих элементов: Cr, Ni, Ti, Mo, Cu, B, Si, Nb, Zr.

Свойства сплава:

  • хорошая свариваемость при условии термообработки выше +700°С;
  • высокая химическая стойкость;
  • необходимость формирования стабильной фазы расплава при температуре до 900°С;
  • коррозионная стойкость.

Изготовление

Сплав создаётся из отходов дюрали, алюминия и железа путём алитирования. В жаростойкую ёмкость (электродуговую печь) засыпают, очищенные от окалин и грязи, куски стали (степень очистки 99%), 49% смесь Al или алюминиевого сплава, содержащего 2% хлористого аммония, а затем спекают в атмосфере аргона. Температура термообработки может составлять от +900°С до +1500°С.

Нагрев ёмкости осуществляют подачей тока на нагревательные элементы или через саму конструкцию, при условии её высокого омического сопротивления.

После нагрева выбирают оптимальный способ отжига, в зависимости от состава компонент, с последующим естественным охлаждением.

Где применяют?

Железоалюминиевые расплавы применяются при производстве деталей и агрегатов, которые подвержены следующим воздействиям:

  • термическому;
  • механическому;
  • окислительному.

Также сплавы заменяют никелевые сверхпрочные сплавы и специальные стали.

Изделия из сплава

Достоинства и недостатки

Преимущество сплава железа с алюминием — механические характеристики, которые сравнимы с некоторыми титановыми и никелевыми суперсплавами. Предел прочности при растяжении составляет до 100 МПа.

Другим достоинством является стойкость к окислению и коррозии при температурах до +700°С. При более высоких температурах допустимо применение таких конструкций, но без значительных механических нагрузок.

К недостаткам относят:

  • хрупкость, проявляемую при определённых условиях эксплуатации и зависящую от температуры и нагрузок;
  • при концентрации алюминия менее 12% сплав подвержен окислению, коррозии снижению пластичности;
  • сложность получения стабильной фазы с заданными характеристиками;
  • низкая прочность на растяжение.

Сплав легко расплавляется, что позволяет снизить расходы на его производство. Допустимо использование вторсырья, которое прошло соответствующие этапы очистки от примесей.

Поддержите канал, просто читайте наши статьи, а мы будем размещать для Вас полезную информацию о металлах!
Так же Вы можете посетить наш сайт, там Вы найдете множество информации о металлах, сплава и их обработке.

Рис.1 Влияние содержания алюминия в стали на ударную вязкость изделий

Их количество, размер, характер распределения зависит от содержания алюминия и азота, а также условий выделения частиц при кристаллизации, охлаждении отливок и их последующей термообработке. В работе оценивали количество азота в металле показавшем разный уровень Аксv.

Рис.2 Влияние содержания азота в стали на ударную вязкость изделий

Из приведенных на рис.2 результатов видно, что при существующей технологии производства изделий содержание азота является важнейшим показателем, определяющим качество металла: повышение количества азота в стали сопровождается ростом Акс v, а высокие значения ударной вязкости (более 1,7 кгс*м/см²) получены лишь при содержании азота не менее 0,015%.

Вместе с тем встречаются случаи, когда при относительно высоком содержании азота (не менее 0,015%) металл характеризуется низким уровнем Акс v. Чтобы понять причину этого, на металле с количеством азота не менее 0,013% оценивали содержание алюминия.

Эти элементы входят в состав нитрида в соотношении 1: 1,92, и если допустить, что весь азот связан в нитриды, то можно оценить количество требуемого для этого алюминия и сравнить его с фактическим содержанием в стали.

Рис.3 Влияние «остаточного» алюминия на ударную вязкость изделий

На рис.

3 представлена зависимость между низкотемпературной ударной вязкостью и содержанием «остаточного» (разницы между фактическим и связанным в нитриды) алюминия, показывающая, что высокие значения Акс v не менее 1,7 кгс*м/см² имеют место лишь при определенном соотношении между содержаниями N и Al: % Al = 1,92 * % N + (0,01 – 0,03) %, где % Al и % N – содержание алюминия и азота в стали, т.е. дефицит алюминия, равно как и его избыток, негативно сказываются на качестве получаемых изделий.

На самом деле влияние азота на уровень ударной вязкости значительно сложнее. Оно проявляется и через упрочнение твердого раствора азотом, и через влияние нитридных частиц на зеренную структуру (причем, лишь частицы определенных размеров являются ингибиторными, т.е. тормозящими рост зерен)и т.д.

Предложенная технология получения боковых рам и надрессорных балок с использованием модифицирования металла включает: выплавку стали 20ГЛ в 30-тонной электропечи с основной футеровкой, порционный перелив металла в 9-12 т разливочные ковши, раскисление алюминием, обработку расплава порошковой проволокой со специально подобранными составами наполнителей из расчета 1-2 кг проволоки на тонну стали, разливку в формы и термообработку литых изделий.

Наполнители порошковой проволоки подбирали на основе силикокальция (состав 1), с добавками азота (состав 2). В отдельных экспериментах модификаторы на основе силико-бария (состав 3) и силикокальция с титаном (состав 4) отдавали в виде крупки размером 1-20 мм на струю при наполнении металлом разливочного ковша из расчета 3 кг на тонну стали.

Оценку сульфидных, оксисульфидных, оксидных и нитридных неметаллических включений (размером более 1 мкм) проводили на готовых изделиях, отличающихся условиями выплавки (текущий и модифицированный металл), содержанием алюминия и азота, а также уровнем низкотемпературной ударной вязкости, по ГОСТ 1778.

Включения в исследовавшихся образцах представлены преимущественно сульфидами, оксисульфидами и оксидами. В плавках с одновременно повышенным содержанием азота

(более 0,015%) и алюминия (более 0,06%),  либо при наличии сильного нитридообразующего элемента (титана) наблюдали нитридные включения. Иногда сульфидные включения располагались на нитридах. Оксидные частицы встречались в виде скоплений.

На металле текущего производства с наибольшей ударной вязкостью (Акс v не менее 2,5 кгс*м/см²) наблюдается минимальное содержание как мелких (до 8 мкм), так и крупных (более 20 мкм) сульфидных включений суммарной объемной долей 75 -100 *10 -6%.

И наоборот, наибольшая плотность и объемная доля сульфидных включений (в 3-5 раз большая, чем у предыдущих) имеет место в металле с низкой ударной вязкостью (Акс v менее 0,9 кгс*м/см 2). Примечательно, что количество сульфидных включений при этом практически не коррелирует с плавочным содержанием марганца и серы.

Модифицирование металла приводит к заметному уменьшению количества сульфидных включений – до уровня, характерного для металла текущего производства с высокой ударной вязкостью. При этом существенно улучшилась жидкотекучесть стали.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.