Биметаллическая пластина своими руками

Автоматическое Проветривание Теплицы Своими Руками > Как Сделать Правильно

Биметаллическая пластина своими руками

Фото простой конструкции

Чтобы растения, высаженные в теплице, росли и давали плоды, необходимо обеспечить им подходящие условия. Одно из условий, это своевременное проветривание. Автопроветривание теплицы своими руками можно установить, если следовать инструкции.

Типы систем автоматической вентиляции

Если тепло обеспечивается благодаря  устройству теплицы, то свежий воздух попадает только с помощью проветривания.

Примечание. Не все, кто выращивает овощи и фрукты, имеют возможность жить рядом с теплицей. Проблема может быть решена с помощью установки автоматического проветривания.

Все, существующие сегодня устройства для вентиляции теплиц в автоматическом режиме выделены в две группы:

  • Автономные устройства, полностью независимые.
  • Автоматизированные системы, зависимые от энергии.

Преимущества и недостатки зависимых от энергии систем для вентилирования теплиц:

ПреимуществаНедостатки
Благодаря высокой мощности, можно устанавливать даже в теплицах с большой площадью.В случае непредвиденного сбоя в электричестве, растения могут погибнуть. Требуется оснащение системы дополнительным источником питания.
Специальные датчики регулируют проветривание теплиц в строго определенное время.Если из строя выходит одна деталь, приходится осуществлять ремонт целого блока.
Такая система действует на высоком уровне и очень компактна, что важно для тех, кто стремится экономить пространство в теплицах.Электропитание требует больших денежных затрат.

Другой тип устройств – полностью независимых от питания, практически не имеет недостатков, но его установка происходит труднее. Требуется закрепление специальных гидроцилиндров (см. Гидроцилиндр для теплицы) или биметаллических пластин, которые позволят открываться форточкам и фрамугам.

Примечание. Проветривание теплицы своими руками, с помощью специального механизма, позволит избежать необходимости постоянно проживать на даче и следить процессом вентилирования.

Создание системы для вентиляции своими руками

Автоматическая система вентиляции.

Для того чтобы создать механизм, приводящий в действие элементы системы, необходимо иметь:

  • Привод.
  • Листы небольшого размера, из металла.
  • Цилиндр для воды.

Механизм с гидравлическим цилиндром

Принцип работы прост – устройство приводится в действие за счет расширения жидкости, набранной в цилиндр, под воздействием лучей солнца.

При повышении температуры, давление воздуха способствует вытеснению жидкости из одного цилиндра в другой. При этом в одной емкости вес становится существенно меньше, и фармуга открывается. Как только температура падает, фармуга закрывается.

Примечание. Можно заполнять цилиндр маслом или парафином, эти вещества расширяются при повышении температуры.

Металлические пластины

Металлические пластины хорошо расширяются при высокой температуре.

Когда это происходит, она, расширяясь, сильно выгибается, и при этом приводит в движение форточку в теплице:

  • Чтобы соорудить механизм, потребуются полосы из металла и дюймовая доска.
  • Следует учитывать, что данный способ подходит только для открытия небольших форточек.
  • Между металлической пластиной и доской нужно вставить брусок. Все это тщательно закрепляется в самом низу теплицы.

Примечание. С помощью шарниров конструкцию нужно соединить с форточкой. Это самая простая конструкция, однако, она не подходит для поднятия большого веса.

Пневматический привод

Открытие форточки будет происходить при расширении в приводе нагретого воздуха.

Чтобы изготовить механизм, потребуется:

  • Поршень с пенопластовым штоком.
  • Резиновый шланг.
  • Сосуд для воздуха, желательно из металла.
  • 20 – сантиметровый цилиндр.
  • Шкив.
  • Прочный шнур.
  • Деревянное коромысло.
  • Шарик, сделанный из пластизоли.

Автоматическое проветривание теплиц своими руками на пневматическом приводе сделать не сложно:

  • Нужно лишь проследить, за тем, чтобы в верхней части цилиндра была закреплена направляющая для штока.
  • В дне проделывается отверстие, через которое протягивается шланг.
  • Механизм начинает работать, когда надувается шарик.
  • Он поднимает шток и поршень, что вызывает натягивание шланга. Когда температура падает, шарик сжимается.
  • Существует также несколько нестандартных способов создания автоматической системы проветривания теплиц.

Примечание. Если в наличии нет металлических пластин и цилиндров, можно использовать то, что всегда под рукой в любом дачном хозяйстве: стеклянные банки.

Система проветривания из сподручных материалов

Как сделать самостоятельно автоматическое проветривание.

Чтобы собрать автоматический механизм потребуются детали:

  • Крышка для банки, используемая при закрутке овощей.
  • Крышка из полиэтилена.
  • Трубка из меди или латуни, около 3 см.
  • Трубка от капельницы, 10 см.
  • Деревянный брусок, отмеряется по форме форточки.
  • Гвозди – 2 шт.
  • Проволока, на которую можно подвесить банки.
  • Средство для пайки – герметик.

Система проветривания из банок создается по несложной инструкции:

  • В большой стеклянный баллон, вместимостью 3 литра, нужно залить 0,8 литра воды. После этого баллон закатывается крышкой. В ней проделывается отверстие, по размерам подходящее для трубки из латуни;
  • После этого отверстие необходимо запаять герметиком;
  • В крышке из полиэтилена проделывается такое же отверстие, только вставляется пластиковая трубка, и также запаивается.
  • После этого банки размещаются в теплице. К раме теплицы приделывается брус, выступающий в роли противовеса.

Примечание. Следует учитывать, что данный способ подходит лишь для тех теплиц, в которых фрамуги открываются по горизонтальной оси. Раз в три недели требуется доливать воду в банки.

Другой необычный метод проветривания основан также на использовании энергии тепла.

Автоматическая, реверсивная система проветривания

Автомат.

Потребуются детали:

  • Канистра из металла. Можно использовать старую.
  • Стакан.
  • Детский шарик.
  • Шток из металла.
  • Кусок пенопласта.
  • Леска.
  • Коромысло.
  • Клей для металла и дерева.
  • Герметик из силикона.
  • Скотч.

Инструкция по сборке:

  • Чтобы тепло быстрее проникало в канистру, ее нужно покрасить в черный цвет.
  • В крышке канистры проделывается отверстие, через которое можно протянуть трубку.
  • Крышка и область вокруг трубки обрабатывается герметиком.
  • Из металла формируется труба, концы которой следует закрепить скотчем. На дне стакана или другого предмета цилиндрической формы вырезается отверстие, так же, как и в крышке.
  • Делается отверстие для штока, после чего все отверстия хорошо обрабатываются герметиком. Одну крышку нужно оставить съемной, чтобы было возможно настроить систему.
  • Чтобы сделать пневматический поршень, надутый шарик наклеивают на полоску скотча, после чего он фиксируется. Из пенопласта нужно вырезать круг, подходящий по диаметру, и его концы также обклеиваются скотчем. Устанавливается шток из металла.

После того, как все приготовления закончены, остается лишь собрать конструкцию:

  • Ресивер закрепляется под потолком, шкив на стене, а цилиндр нужно поставить недалеко от фрамуги. Затем проводятся все трубки. Чтобы система заработала, ее нужно настроить.
  • К шарику прикрепляется шланг и соединяется с ресивером. Устанавливается поршень. Проводить настройку рекомендуется в прохладную погоду, при температуре не выше 18 градусов.

Можно выбрать любой из вариантов механизмов для проветривания теплиц, и собрать его по инструкции. Это позволит избежать необходимости регулярно проветривать теплицу самостоятельно и проживать рядом с ней. Для более подробной информации рекомендуем посмотреть видео в этой статье.

Биметаллическая пластина: устройство, принцип действия, практическое применение

Биметаллическая пластина своими руками

Сложные системы автоматики, выполняющие роль переключения режимов работы тех или иных устройств, построены на простейших элементах. Они имеют свойство изменять какой-либо из своих параметров (форму, объем, электропроводность и др.) под воздействием одного или нескольких факторов.

Так, все современные нагревательные элементы снабжены терморегуляторами, контролирующими степень нагрева поверхности. Основой любого термостата является биметаллическая пластина.

Что такое пластина биметаллическая

Элемент, обладающий свойством деформироваться (изгибаться) в одном направлении под воздействием повышенной температуры, получил название биметаллическая пластина.

По названию можно догадаться, что в составе пластины имеются два металла. Каждый из них имеет свою величину коэффициента температурного расширения.

В результате при нагреве такой пластины один компонент ее расширяется на определенную величину, а второй на другую.

Это приводит к изгибу, форма которого зависит от разности температурных коэффициентов. Скорость деформации прямо пропорциональна изменению температуры. При охлаждении пластины она приобретает исходное положение. Пластина является монолитным соединением и может работать сколь угодно долго.

Для того чтобы соединить металлы между собой в единый биметалл, применяют способы пайки, сварки и заклепки.

Примером распространенной биметаллической пластины служит соединение латуни и стали. Такой композит имеет высокую термочувствительность.

Существуют аналоги биметалла из неметаллических материалов (стекло, керамика). Они призваны работать в агрессивных химических средах, где не может быть использован металл.

Как работает биметаллическая пластина

Пластина из биметалла работает в составе различных систем терморегулирования и термоконтроля, а точнее в термореле многих модификаций. В простейшее термореле входит:

  • Термостойкий корпус. В нем размещены все элементы реле.
  • Клеммы – служат для подключения электрической цепи.
  • Механические переключатели контактов или контактных групп. Замыкают и размыкают электрические контакты, включая или отключая цепь.
  • Диэлектрический шток либо прокладка. Передает механическое воздействие от пластины к переключателю.
  • Биметаллическая пластина. Является элементом реагирования на изменение температуры и создает давление на шток.
  • Датчик температуры. Обыкновенная металлическая пластина, непосредственно соединенная с элементом контроля. Она обладает хорошей теплопроводностью и передает тепло на биметалл.

Когда поверхность нагревателя имеет допустимую температуру, биметаллическая пластина находится в определенном изогнутом (ровном) состоянии, электрические контакты при этом замкнуты, в цепи нагревателя течет ток.

При повышении температуры поверхности биметалл начинает греться и постепенно деформируется, оказывая давление на шток. При этом наступает момент, когда шток размыкает контакт механического переключателя, и прерывается ток в цепи нагревателя. Далее он остывает, охлаждается пластина, цепь замыкается, и все повторяется снова.

Часто реле выпускают с возможностью регулирования срабатывания по величине температуры.

Биметаллическая пластина котла

Системы отопления на природном газе являются устройствами повышенной опасности, поэтому включают в себя различные датчики контроля состояния. Так, основной элемент безопасности – это датчик тяги. Он определяет правильное направление выхода продуктов сгорания, то есть от камеры сгорания в сторону дымохода. Это предотвращает попадание угарного газа в помещение и отравление людей.

Основным компонентом датчика тяги является биметаллическая пластина для газового котла. Принцип работы ее аналогичен любому биметаллу, а размеры и параметры материала рассчитаны таким образом, что превышение температуры 75 градусов в канале приводит к деформации пластины и срабатыванию газового клапана.

В каких устройствах используют биметалл

Область применения биметаллической пластины необычайно широка. Практически все устройства, где необходим контроль за температурой, оснащены термостатами на основе биметалла. Это объясняется конструктивной простотой и надежностью таких релейных систем. В привычной нам технике термостаты стоят:

  • В бытовых нагревательных приборах: печи, гладильные системы, бойлеры, электрочайники, и др.
  • Системы отопления: электрические конвекторы, газовые и твердотопливные котлы с электроникой.
  • В электропакетниках автоматического выключения.
  • В электронике в измерительных приборах, а также в генераторах импульсов и временных реле.
  • В двигателях теплового типа.

В промышленной технике биметаллические пластины устанавливают в тепловых реле, призванных защищать мощные электрические приборы от температурных перегрузок: трансформаторы, электродвигатели, насосы и т.д.

Когда меняют пластину

Все биметаллические пластины имеют длительный срок службы, но иногда ее замена неизбежна. Необходимость наступает тогда, когда:

  • Биметалл потерял свои свойства или произошло их изменение, что не соответствует режиму работы устройства.
  • Пластина выгорела (относится к тепловым реле).
  • При нарушении фиксирующего болта либо выходе из строя горелки запальника (в газовых котлах).
  • Когда замена пластины предполагается плановыми мероприятиями технического обслуживания.

В бытовой технике ее обычно не меняют. Если выходит из строя система терморегуляции, то замена биметаллической пластины происходит целым блоком, которые идут как запчасти к конкретной модели устройства. Но часто причиной выхода из строя термостата служит подгорание размыкающих контактов, а не биметаллическая пластина.

Устройство теплового реле. Разбираем ИЭК РТИ-1308

Биметаллическая пластина своими руками

Согласно закону Джоуля-Ленца, количество тепла, выделяемое участком электрической цепи, пропорционально квадрату силы тока и сопротивлению этого участка.

Это дает возможность создавать устройства, выполняющие небольшую механическую работу (например, по замыканию/размыканию контактной пары) при достижении силы тока на исследуемом участке цепи определенного значения.

Подобные устройства получили название тепловых (электротепловых) реле или реле тепловой защиты.

Тепловое реле, как правило, служит для защиты (аварийного отключения и/или сигнализации об аварийной ситуации) электрических цепей и электрооборудования от повышения тока потребления сверх некого номинального (нормального) значения. Повышение тока потребления может свидетельствовать, например, о чрезмерной нагрузке на вал двигателя, межвитковом замыкании и т.д.

Биметаллическая пластина

Факт того, что проводник с током греется, не дает возможность напрямую совершить какую-либо существенную механическую работу, так как степень нагрева нуждается в оценке, например, термодатчиком.

Оказывается, есть возможность поступить проще, а именно «научить» проводник закономерно изменять свою геометрическую форму пропорционально изменению температуры.
Как известно, линейные размеры металлов при нагреве меняются. Известно также, что у разных металлов коэффициенты теплового расширения различные.

Например, при нагреве на одно и то же значение температуры, полоска из металла, обладающего большим коэффициентом теплового расширения, удлиниться на большее значение, чем полоска из другого металла, коэффициент теплового расширения которого ниже.

Если соединить вместе две одинаковые по форме полоски разнородных металлов, то, при изменении температуры, геометрическая форма этой конструкции тоже будет изменяться — изгибаясь и распрямляясь, в зависимости от температуры. Скрепленные воедино две пластины разнородных металлов получили название биметаллической пластины.

Биметаллическая пластина, как своеобразный прибор для оценки силы тока по его нагреву и последующего воздействия на какой-либо исполнительный механизм, широко применяется в различных бытовых и промышленных устройствах автоматики.

Принцип работы биметаллической пластины.

Устройство теплового реле на примере ИЭК РТИ-1308

Теория принципа действия теплового реле была вкратце рассмотрена выше, обратимся к практике. Вскроем корпус и разберемся с внутренним устройством низковольтного трехфазного теплового (тепломеханического) реле ИЭК РТИ-1308. Его основные технические характеристики представлены в таблице ниже.

Таблица. Основные технические характеристики теплового реле ИЭК РТИ-1308.

Характеристика силовой цепи Значение
Диапазон регулировки тока срабатывания 2,5–4 А
Стандартные рабочие напряжения 230, 400, 660 В
Максимальная частота переменного тока 400 Гц

Характеристика цепи управления Значение
Тип контактов 1 замкнутый + 1 разомкнутый
Максимальная коммутируемая мощность при напряжении 110 В 400 ВА
Максимальная коммутируемая мощность при напряжении 230 В 600 ВА
Максимальная коммутируемая мощность при напряжении 400 В 600 ВА

Принцип работы теплового реле РТИ можно описать следующим образом. При протекании электрического тока по биметаллическим пластинам (каждой из трех фаз предназначается своя пластина), происходит их нагрев.

Чем выше ток, тем сильнее нагрев биметаллических пластин и, следовательно, больше их изгиб в определенную (конструктивно заданную) сторону. Изгибаясь, пластины давят на систему рычагов.

При достижении хотя бы одной из трех пластин критического значения по углу изгиба, вследствие превышения на одной или нескольких фазах номинального установленного рабочего тока, происходит срабатывание исполнительного (контактного) механизма цепи управления, и контактные пары переводятся во взаимно противоположные состояния. В таком, нагретом до момента срабатывания реле, состоянии биметаллические пластины будут удерживать реле до тех пор, пока на все фазах тепловой ток не придет в норму. Ток снижается — биметаллические пластины охлаждаются, переводя систему рычагов в первоначальное состояние. Если у теплового реле активирован режим автоматического пуска, то контактные группы тоже автоматически переключаться в первоначальное состояние, если нет – нужно вручную включать реле после каждого его срабатывания. На фотографиях ниже можно увидеть процесс вскрытия РТИ-1308 и пояснения к нему.

Упаковка.

Вид сбоку (фото слева).
Вид на силовые контакты. Расстояния между контактами можно менять благодаря овальным отверстиям корпуса (фото справа).

Органы управления и настройки РТИ-1308.

Под шильдиком прячется подстроечный винт. Благодаря ему, происходит актуализация значений шкалы диска настройки тока.
Количество заводсткой краски, нанесенной на резьбу подстроечного винта, оказалось недостаточным (винт легко вращался на пару оборотов). Дополнительно закрашиваем резьбу цапонлаком (фото снизу).

 
Вскрываем корпус, подцепляя тонкой плоской отверткой пластмассовые защелки по периметру корпуса.
Вскрыть корпус, не отломив ни одной защелки, очень сложно — пластмасса хрупкая (фото справа внизу).

Корпус вскрыт.

Биметаллические пластины смешанного нагрева (ток идет через обмотку нагрева и через саму пластину).

 
Изгиб пинцетом любой биметаллической платины инициирует срабатывание реле. Чем выше установленный ток, тем сильнее нужно изгибать пластины.

Реле без биметаллических пластин.
Нажимаем пинцетом на рычаг — происходит срабатывание реле (фото справа).

 
Система рычагов для объединения изгибающих усилий пластин воедино по логическому закону «ИЛИ». То есть, изгиб хотя бы одной (любой) пластины вызывает пропорциональное смещение верхнего рычага системы.

Система находится в своём крайнем левом положении, соответствующем минимальному изгибу биметаллических пластин (фото слева).

Система находится в своём крайнем правом положении, соответствующем максимальному изгибу биметаллических пластин (фото справа).

Реле сработало (желтый Г-образный флажок в крайнем правом положении) и ждёт ручного пуска, так как синий переключатель в положении ручного управления (фото слева).
Нажимаем непосредственно на рычажок, идущий к контактным группам (фото справа).

Съём исполнительного механизма происходит путём откручиванием единственного винта.

Исполнительный механизм со стороны контактных групп.
При нажатии на кнопку «Стоп», происходит размыкание замкнутой пары контактов.

Все детали теплового реле ИЭК РТИ-1308.

Время срабатывания теплового реле зависит от кратности превышения тока, то есть от того, во сколько раз реальный ток превысил установленный (см. график ниже).

График (кривые) срабатывания РТИ-1308 (фото сверху).
Схематичное обозначение РТИ-1308 (фото снизу).

Кнопкой «тест» можно сымитировать срабатывание реле, то есть принудительно перевести контактные пары исполнительного механизма в противоположные состояния.

Таким образом, можно проверить лишь правильность работы каких-либо электронных устройств (например, контактора), коммутируемых тепловым реле.

Всецело же корректность работы теплового реле проверяется только на специальном испытательном стенде с моделированием прохождения через реле различных токов, как ниже, так и выше установленного тока срабатывания реле.

В заключение, нужно сказать о трех важных вещах, касаемо тепловых (тепломеханических) реле. Во-первых, любое тепломеханическое реле имеет собственное (небольшое, но постоянное) потребление энергии, расходуемое на подогрев биметаллических пластин.

Во-вторых, тепловое реле не предназначено для защиты от токов короткого замыкания, которому характерен сверхбыстрый рост тока. Это обусловлено относительно высокой инертностью биметаллических пластин, которые не способны нагреться так быстро.

Для защиты от короткого замыкания, в паре с тепловыми реле, необходимо применять автоматические выключатели электромагнитного расцепления. В-третьих, ток срабатывания теплового реле зависит от температуры окружающей среды, условий охлаждения корпуса реле и прочих факторов.

Таким образом, в качестве прецизионного устройства защиты, где требуется очень точная оценка электрического тока, тепловое реле тепломеханического типа использовать нельзя, погрешности весьма значительны.

Биметаллическая пластина своими руками — Справочник металлиста

Биметаллическая пластина своими руками

Согласно закону Джоуля-Ленца, количество тепла, выделяемое участком электрической цепи, пропорционально квадрату силы тока и сопротивлению этого участка.

Это дает возможность создавать устройства, выполняющие небольшую механическую работу (например, по замыканию/размыканию контактной пары) при достижении силы тока на исследуемом участке цепи определенного значения.

Подобные устройства получили название тепловых (электротепловых) реле или реле тепловой защиты.

Тепловое реле, как правило, служит для защиты (аварийного отключения и/или сигнализации об аварийной ситуации) электрических цепей и электрооборудования от повышения тока потребления сверх некого номинального (нормального) значения. Повышение тока потребления может свидетельствовать, например, о чрезмерной нагрузке на вал двигателя, межвитковом замыкании и т.д.

Автоматическое проветривание теплиц своими руками

Автоматическое проветривание теплиц позволяет поддерживать оптимальный температурный режим в зоне роста культур с минимальным участием человека.

Насколько это важно?

Судите сами: с понижением температуры окружающего воздуха на 10 градусов, интенсивность роста у растений сокращается в среднем в два раза; в то же время, излишнее количество теплоты (выше 40С) — действует на сельскохозяйственные культуры угнетающе.

Попробуем разобраться, что такое автопроветривание и может ли владелец небольшой теплицы соорудить автоматическое проветривание теплицы своими руками.

Как нужно проветривать теплицу?

Изобретение поликарбоната значительно упростило и удешевило создание теплиц.

Последние сегодня весьма распространены, особенно в регионах с прохладным климатом и, соответственно, коротким весенне-летним сезоном.

Автоматическое проветривание теплицы: реализация механизма своими руками

Биметаллическая пластина своими руками

Конструкция всех теплиц практически одна и та же: под воздействием солнечных лучей воздух внутри прогревается, что способствует быстрому росту теплолюбивых растений.

Благодаря теплицам растения могут легко пережить температурные перепады, как днем, так и ночью.

Но помимо тепла всем тепличным растениям требуется ежедневное проветривание. Если дачник живет на своей даче весь сезон, то для него не является сложной задачей каждый день проветривать свои теплицы, но для тех, кто посещает свой участок непостоянно, это может оказаться большой проблемой.

Рассмотрим несколько самых эффективных способов реализации автоматического проветривания теплиц своими руками, а также разберемся в том, почему так необходима вентиляция теплиц?

Зачем необходимо проветривать теплицу?

Мечтой любого дачника является «умная» теплица, оснащенная автоматической системой проветривания.

Тепличные растения отличаются своей чрезмерной восприимчивостью к перегреву, который может замедлить рост растений или вообще погубить их.

Очень важно, чтобы в жаркие летние дни форточки теплицы были открытыми, так как некоторые растения при температуре в теплице выше +32 °С просто не дают плоды, а если температура достигнет +40 °С, то растения вовсе гибнут.

Кроме всего этого различные губительные для тепличных растений микроорганизмы и грибки будут быстро размножаться в непроветриваемом помещении в горячем застоявшемся воздухе.

Поэтому организовать проветривание в теплице, с целью создания комфортной среды обитания для растений, необходимо обязательно!

Виды автоматической вентиляции

Все современные устройства, предназначенные для создания системы автоматического проветривания теплиц, разделяют на несколько категорий:

  • независимые (автономные) механизмы;
  • автоматизированные энергозависимые системы.

В своем большинстве энергозависимые системы питаются от электричества, но могут получать питание и от солнечных батарей или прочих источников энергии.

Основной элемент такой системы – термореле с заданными параметрами. С его помощью происходит автоматическое включение вентиляторов, работающих на выдувание отработанного воздуха наружу и подачу свежего внутрь теплицы.

Преимущества энергозависимой системы вентиляции:

  • высокая мощность системы позволяет использовать ее в теплицах практически любой площади;
  • благодаря специальным датчикам проветривание теплиц осуществляется в самое оптимальное для этого время;
  • такая система весьма компакта и высокотехнологична.

Вы желаете построить парник из пластиковых труб своими руками? Тогда вам будет интересно изучить подробную инструкцию касательно этого вопроса.

Тепло, как и свежий воздух, очень важны для качественного выращивания рассады и овощей. Узнайте, как сделать отопление в теплице своими руками.

Недостатки энергозависимых вентиляционных систем:

  • возможный сбой в электросети может стать причиной гибели растений, поэтому возникает необходимость в установке дополнительного (резервного) источника энергии;
  • выход из строя составных частей системы в большинстве случаев требует «блокового» ремонта;
  • такая система требует денежных затрат на электропитание.

Помимо энергозависимых систем принудительной вентиляции теплиц существуют более упрощенные автономные версии, для работы которых не нужен источник питания.

Это различные автоматические системы проветривания, основанные на открытии фрамуг и форточек под воздействием гидроцилиндров, пневмоприводов или биметаллических пластин.

Автоматизированная система проветривания теплиц считается наилучшим вариантом для тех, кто посещает дачу периодически.

Современные устройства данного типа позволяют создать благоприятный микроклимат для растений даже тогда, когда вас нет на даче.

Создаем систему вентиляции собственными руками

Автоматическое проветривание теплицы своими руками возможно реализовать на основе:

  • пневматического привода;
  • гидравлического цилиндра;
  • металлических пластин.

На видео использование термопривода для автоматического проветривания теплицы.

Применение гидравлического цилиндра

Принцип работы такого устройства базируется на расширении жидкости под действием теплых солнечных лучей.

Когда температура увеличивается, воздух вытесняет жидкость из одной емкости в другую (в меньшую). Из-за увеличения веса меньшей емкости фрамуга открывается.

При снижении температуры жидкость втягивается обратно в сосуд, внешняя емкость становится легче, что влечет закрытие фрамуги.

Преимуществом такой системы является ее абсолютная автономность, высокая долговечность и надежность. Для работы системы не нужно электричество.

Среди недостатков можно выделить то, что если температура воздуха резко снижается, то форточки просто не успевают закрыться. Также невозможно использовать данную систему при боковых фрамугах.

Современный рынок гидроцилиндров представлен широким ассортиментом устройств, но принцип работы у всех одинаковый.

Заполненный жидкостью (парафином, маслом) цилиндр имеет на одном своем конце выдвигающийся шток. При расширении масла от высокой температуры внутри теплицы шток вытесняется и толкает форточку.

Чем выше температура в теплице, тем сильнее расширяется масло и тем больше выдвигается шток, шире открывая форточку. При понижении температуры масла в цилиндре форточка закрывается.

На видео один из возможных для реализации своими руками вариантов автоматического проветривания теплицы.

Проветривание с помощью пневмопривода

Основой работы такой системы является энергия расширения нагретого воздуха. Для того чтобы изготовить пневматический привод для системы автоматического проветривания теплиц потребуется подготовить:

  • поршень со штоком из пенопласта;
  • соединительный шланг из резины;
  • старая металлическая канистра или любая другая емкость для воздуха;
  • цилиндр диаметром 20 см с припаянным дном;
  • шарик из пластизоли;
  • шкив;
  • шнур (потребуется для тетивы);
  • коромысло.

Направляющая для штока должна быть прикреплена в верхней части цилиндра. Для соединения со шлангом в дне необходимо просверлить отверстие.

Пневматическая установка, применяемая для создания системы проветривания теплиц, работает по такому принципу: в находящийся в канистре воздух нагревается под действием солнечных лучей.

Это вызывает надувание шарика, который поднимает поршень со штоком и тот, воздействуя на коромысло, вызывает натягивание тетивы. Таким образом, форточка распахивается. Обратный процесс закрытия форточки происходит в результате сжатия жидкости из-за снижения температуры.

На фото проветривание теплицы сделанное на основе пневмопривода своими руками

Использование биметаллических пластин

Конструктивно эта система выполняется из металлических пластин, которые обладают разным коэффициентом расширения. Когда пластина нагревается, то она увеличивается в размере и сильно изгибается, что способствует открытию форточки. Обратный процесс происходит при охлаждении пластины.

Для того чтобы изготовить подобное устройство для автоматического проветривания теплиц понадобятся металлические полосы и строганная доска (дюймовая).

Внизу теплицы необходимо прикрепить обе детали, а между металлической пластиной и достой (немного ниже, чем на ½ длины пластины) вставьте брусок и все туго скрепите. Форточки соединяются с металлической полосой с помощью шарниров (болтиков, вставленных в трубку).

Преимущество биметаллических пластин: простота изготовления и дешевизна.

Основной недостаток: небольшая мощность системы, открыть большую форточку таким методом будет невозможно.

Принцип действия биметаллической пластины.

В сухом остатке

С целью поддержания благоприятного микроклимата для тепличных растений необходимо обеспечить проветривание теплиц (лучше автоматическое). Системой вентиляции могут быть как форточки в крыше и стенах конструкций, так и целые фрамуги, открывающиеся в автоматическом режиме.

Для небольших парников, оранжерей и тепличек достаточно и простой вентиляционной системы (состоящей из нескольких форточек, расположенных на разном уровне, и распахнутых дверей).

А вот для крупногабаритной теплицы необходимо организовать специальную систему автоматического проветривания вместе со сквозным продуванием при нескольких одновременно открывающихся дверях (в автоматическом режиме).

Такая система будет идеальной для узких и длинных теплиц, в которых затруднена циркуляция воздуха.

Лучше всего установить в теплице сложную систему вентиляции со специальными датчиками температуры и влажности воздуха.

Но для маленького приусадебного участка можно сконструировать систему автоматического проветривания теплицы своими руками с простыми, но надежными механизмами.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.