Для чего в сталь вводятся легирующие элементы

Для чего в сталь вводятся легирующие элементы

Для чего в сталь вводятся легирующие элементы

Сталь – один из самых востребованных материалов в мире сегодня.

Без нее сложно представить любую существующую строительную площадку, машиностроительные предприятия, да и много других мест и вещей, которые нас окружают в повседневной жизни.

Вместе с тем, этот сплав железа с углеродом бывает достаточно различным, потому в данной статье будет рассмотрено влияние легирующих элементов на свойства стали, а также ее виды, марки и предназначение.

Общая информация

Сегодня многие марки стали широко применяются практически в любой сфере жизнедеятельности человека.

Это во многом объясняется тем, что в этом сплаве оптимально сочетается целый комплекс механических, физико-химических и технологических свойств, которые не имеют какие-либо другие материалы.

Процесс выплавки стали непрерывно совершенствуется и потому ее свойства и качество позволяют получить требуемые показатели работы получаемых в итоге механизмов, деталей и машин.

Каждая сталь в зависимости от того, для чего она создана, в обязательном порядке может быть причислена в одну из следующих категорий:

  • Конструкционная.
  • Инструментальная.
  • Специального назначения с особыми свойствами.

Самый многочисленный класс – это конструкционные стали, разработанные для создания разнообразных строительных конструкций, приборов, машин. Конструкционные марки разделяются на улучшаемые, цементуемые, пружинно-рессорные, высокопрочные.

Инструментальные стали дифференцируют в зависимости от того, для какого инструмента они производятся: режущего, измерительного и т. д. Само собой, что влияние легирующих элементов на свойства стали этой группы также велико.

Специальные стали имеют свое разделение, которое предусматривает следующие группы:

  • Нержавеющие (они же коррозионностойкие).
  • Жаропрочные.
  • Жаростойкие.
  • Электротехнические.

Группы сталей по химическому составу

Классификацией озвучиваются стали в зависимости от образующих их химических элементов:

  • Углеродистые марки стали.
  • Легированные.

При этом обе эти группы дополнительно разделяются еще и по количеству содержащегося в них углерода на:

  • Низкоуглеродистые (карбона менее 0,3%).
  • Среднеуглеродистые (концентрация карбона равно 0,3 – 0,7 %).
  • Высокоуглеродистые (карбона более 0,7%).

Что такое легированная сталь?

Под этим определением следует понимать стали, в которых содержатся, параллельно с постоянными примесями, еще и добавки, внедряемые в структуру сплава, с целью увеличения механических свойств полученного в конечном счете материла.

Несколько слов о качестве стали

Этот параметр данного сплава подразумевает под собой совокупность свойств, которые, в свою очередь, обуславливаются непосредственно процессом его производства. К подобным характеристикам, которым подчиняются и легированные инструментальные стали, относятся:

  • Химический состав.
  • Однородность структуры.
  • Технологичность.
  • Механические свойства.

Качество любой стали напрямую зависит от того, сколько содержится в ней кислорода, водорода, азота, серы и фосфора. Также не последнюю роль играет и метод получения стали. Самым точным с точки зрения попадния в требуемый диапазон примесей является сопособ выплавки стали в электропечах.

Легированная сталь и изменение ее свойств

Легированная сталь, марки которой содержат в своей маркировке буквенные обозначения вводимых принудительно элементов, меняет свои свойства не только от этих сторонних веществ, но и также от их взаимного действия между собой.

Если рассматривать конкретно углерод, то по взаимодействию с ним легирующие элементы можно условно разделить на две большие группы:

  • Элементы, которые формируют с углеродом химическое соединение (карбид) – молибден, хром, ванадий, вольфрам, марганец.
  • Элементы, не создающие карбидов – кремний, алюминий, никель.

Стоит заметить, что стали, которые легируются карбидобразующими веществами, имеют очень высокую твёрдость и повышенное сопротивление износу.

Низколегированная сталь (марки: 20ХГС2, 09Г2, 12Г2СМФ, 12ХГН2МФБАЮ и другие). Особое место занимает сплав 13Х, который достаточно тверд для изготовления из него хирургического, гравировального, ювелирного оборудования, бритв.

Расшифровка

легирующих элементов в стали можно определить по ее маркировке. Каждая из таких вводимых в сплав составляющих имеет своё буквенное обозначение. Например:

  • Хром – Cr.
  • Ванадий –V.
  • Марганец –Mn.
  • Ниобий – Nb.
  • Вольфрам –W.
  • Титан – Ti.

Иногда в начале индекса марки стали стоят буквы. Каждая из них несет особый смысл.

В частности, буква «Р» означает, что сталь является быстрорежущей, «Ш» сигнализирует, что сталь шарикоподшипниковая, «А» – автоматная, «Э» – электротехническая и т. д.

Высококачественные стали имеют в своем цифро-буквенном обозначении в конце литеру «А», а особо качественные содержат в самом конце маркировки букву «Ш».

Воздействие легирующих элементов

В первую очередь следует сказать, что основополагающее влияние на свойства стали оказывает углерод. Именно этот элемент обеспечивает с повышением своей концентрации увеличение прочности и твердости при снижении вязкости и пластичности. Кроме того, повышенная концентрация углерода гарантирует ухудшение обрабатываемости резанием.

хрома в стали напрямую влияет на ее коррозионную стойкость. Этот химический элемент формирует на поверхности сплава в агрессивной окислительной среде тонкую защитную оксидную пленку. Однако для достижения такого эффекта в стали хрома должно быть не менее 11,7%.

Особого внимания заслуживает алюминий. Его применяют в процессе легирования стали для удаления кислорода и азота после ее продувки, дабы поспособствовать уменьшению старения сплава. Кроме того, алюминий значительно повышает ударную вязкость и текучесть, нейтрализует крайне вредное влияние фосфора.

Ванадий – это особый легирующий элемент, благодаря которому легированные инструментальные стали получают высокую твёрдость и прочность. При этом в сплаве уменьшается зерно и повышается плотность.

Легированная сталь, марки которой содержат вольфрам, наделена высокой твёрдостью и красностойкостью. Вольфрам хорош также и тем, что он полностью устраняет хрупкость во время запланированного отпуска сплава.

Для увеличения жаропрочности, магнитных свойств и сопротивления значительным ударным нагрузкам сталь легируют кобальтом. А вот одним из тех элементов, который не оказывает какого-либо существенного влияния на сталь, является кремний. Однако в тех марках стали, которые предназначены для сварных металлоконструкций, концентрация кремния должна быть обязательно в пределах 0,12-0,25 %.

Значительно повышает механические свойства стали магний. Его также используют в качестве десульфуратора в случае использования внедоменной десульфурации чугуна.

Низколегированная сталь (марки ее содержат легирующих элементов менее 2,5%) очень часто содержит марганец, что обеспечивает ей непременное увеличение твердости, износоустойчивости при сохранении оптимальной пластичности. Но при этом концентрация этого элемента должна быть более 1%, иначе не получится достигнуть указанных свойств.

Углеродистые марки стали, выплавляемые для различных масштабных строительных конструкций, содержат в себе медь, которая обеспечивает максимальные антикоррозионные свойства.

Для увеличения красностойкости, упругости, предела прочности при растяжении и стойкости к коррозии в сталь обязательно вводят молибден, который также еще и повышает сопротивление окислению металла при нагреве до высоких температурных показателей. В свою очередь церий и неодим применяются для снижения пористости сплава.

Характеристика легированных сталей

Легированная сталь представляет собой сталь, которая кроме обычных примесей оснащена еще и дополнительными добавочными веществами, которые необходимы для того, чтобы она соответствовала тем или иным химическим и физическим требованиям.

Обычная сталь состоит из железа, углерода и примесей, без которых невозможно себе представить данный материал. В легированную сталь добавляются дополнительные вещества, которые получили название легирующих. Они используются для того, чтобы сталь стала обладать такими свойствами, которые необходимы в тех или иных ситуациях.

В большинстве случаев в качестве легирующих элементов к железу, примесям и углероду добавляются: никель, ниобий, хром, марганец, кремний, ванадий, вольфрам, азот, медь, кобальт. Также не редко в таком материале отмечаются такие вещества, как молибден и алюминий. Для придания прочности материалу в большинстве случаев добавляется титан.

Такой вид стали имеет три основные категории. Отношение легированной стали к той или иной группе обусловлено тем, сколько в ней содержится стали и примесей, а также легированных добавок.

Виды легированной стали

Есть три основных вида стали с легирующими элементами:

Она характеризуется тем, что в ней содержится около двух с половиной процентов легирующих дополнительных элементов.

  • Среднелегированная сталь.

Данный материал имеет в своем составе от 2.5 до 10 процентов легирующих дополнительных веществ.

  • Высоколегированная сталь.

К данному виду относятся стальные материалы, количество легирующих добавок в которых превышает десяти процентов. Количество этих компонентов в такой стали может достигать пятидесяти процентов.

Назначение легированной стали

Легированную сталь широко применяют в современной промышленности. Она обладает высоким уровнем прочности, что позволяет изготовлять из нее оборудование для резки и рубки металлического проката самых разных видов.

По своему назначению стали легированного типа могут быть представлены большим количеством групп.

Основными из них являются:

  • конструкционная легированная сталь,
  • инструментальная легированная сталь,
  • легированная сталь с особыми химическими и физическими свойствами.

Характеристики легированных сталей могут быть разнообразными. Они их приобретают благодаря соотношению основных элементов. Стали такого типа являются в любом случае более прочными и устойчивыми к образованию коррозии.

Свойства легированной стали

Свойства легированных сталей являются разнообразными. Они главным образом определяются теми добавками, которые применяются в качестве легирующих при производстве отдельных видов стальных материалов.

В зависимости от добавленных легирующих компонентов сталь приобретает следующие качества:

  • Прочность. Данное свойство приобретает после добавления в ее состав хрома, марганца, титана, вольфрама.
  • Устойчивость к образованию коррозии. Это качество появляется под воздействием хрома, молибден.
  • Твердость. Сталь становится боле твердой благодаря хрому, марганцу и другим элементам.

Внимание: Стоит отметить, что для того, чтобы легированная сталь была более прочной и устойчивой к внешнему влиянию окружающей среды необходимое содержание хрома не должно быть менее двенадцати процентов.

Сталь легированного типа при правильном процентном соотношении всех входящий в нее элементов не должна менять свои качестве при температуре нагревания до шестисот градусов Цельсия.

Марки легированной стали

Марки легированной стали являются различными. Они представлены в большом многообразии. В зависимости от назначения стали определяется ее маркировка.

Сегодня имеется большое количество требований к маркировке легированной стали. Для данного процесса используются цифровые и буквенные обозначения. Сначала при маркировке используются цифры.

Они являются показателями того, сколько содержится в том или ином виде легированной стали сотых долей углерода.

После цифр стоят буквы, которые являются обозначением того, какие легирующие добавки были использованы при производстве того или иного легированного типа стали.

После букв могут стоять цифры, обозначающие количество легирующего вещества в составе стального материала. Если после обозначения какого-либо легирующего элемента не стоит цифровое обозначение, то его в составе имеется минимальное количество, не достигающее даже одного процента.

Таблица 1. Сопоставление марок стали типа Cm и Fе по международным стандартам ИСО 630-80 и ИСО 1052-82

Марки сталиСтFeСтFe
СтОFe310-0Ст4кпFe430-A
Ст1кпСт4псFe430-B
Ст1псСт4спFe430-C
Ст1спFe430-D
Ст2кпСт5псFe510-B, Fe490
Ст2псСт5ГпсFe510-B, Fe490
Ст2спСг5спFe510-C, Fe490
СтЗкпFe360-A
СтЗпсFe360-BСт6псFe590
СтЗГпсFe360-BСтбспFe590
СтЗспFe360-CFe690
СтЗГспFe360-C
Fe360-D

Таблица 2. Условные обозначения легирующих элементов в металлах и сплавах

ЭлементСимволОбозначение элементов в марках металлов и сплавовЭлементСимволОбозначение элементов в марках металлов и сплавовчерныецветныечерныецветные
АзотNАНеодимNdНм
АлюминийА1ЮАНикельNiН
БарийВаБрНиобийNbБНп
БериллииBeЛОловоSnО
БорВрОсмийOsОс
ВанадииVфВамПалладийPdПд
висмутBiВиВиПлатинаPtПл
ВольфрамWВПразеодимPrПр
ГадолинийGdГнРенийReРе
ГаллийGaГиГиРодийRhRg
ГафнииHfГфРтутьHgР
ГерманийGeГРутенийRuPv
ГольмийНоГОМСамарийSmСам
ДиспрозийDvДИМСвинецPbС
ЕвропийEuЕвСеленSeКСТ
ЖелезоFeЖСереброAgСр
ЗолотоAuЗлСкандийScС км
ИндийInИнСурьмаSbCv
ИридийIrИТаллийTlТл
ИттербийYbИТНТанталТаТТ
ИттрийYИМТеллурТеТ
КадмийCdКдКдТербийTbТом
КобальтCoККТитанTiТТПД
КремнийSiСКр(К)Т'лийTmТУМ
ЛантанLaЛаУглеродСУ
ЛитийLiЛэФосфорPпФ
ЛютецийLuЛюнХромCrхХ(Хр)
МагнийMgШМгЦерийCeСе
МарганецMnГМц(Мр)ЦинкZnЦ
МедьCuДМЦирконийZrЦЦЭВ
МолибденMoМЭрбийErЭрм

Элементы легирующие. Влияние легирующих элементов на свойства стали и сплавов

Образование 28 марта 2017

В строительстве, промышленности и некоторых направлениях сельского хозяйства можно наблюдать активное применение металлических изделий. Причем один и тот же металл в зависимости от сферы использования раскрывает разные технико-эксплуатационные свойства.

Объяснить это можно процессами легирования. Технологической процедуры, в рамках которой базовая заготовка обретает новые качества или улучшается по имеющимся характеристикам.

Этому способствуют активные элементы, легирующие свойства которых вызывают химические и физические процессы изменения металлической структуры.

Основные легирующие элементы

Большое, но неоднозначное значение в процессах легирования имеет углерод. С одной стороны, его концентрация в структуре металла порядка 1,2% способствует повышению прочности, твердости и уровня хладноломкости, а с другой – он же снижает теплопроводность и плотность материала. Но даже не это главное.

Как и все элементы легирующие, его добавляют при выполнении технологической переработки под сильным температурным воздействием. Однако, далеко не все примеси и активные компоненты сохраняются в структуре после завершения операции.

Как раз углерод может оставаться в металле и в зависимости от требуемых характеристик конечного изделия технологи принимают решение о доработке металла или сохранении его текущих качеств. То есть они варьируют уровень содержания углерода посредством специальной операции легирования.

Также в перечень основных элементов легирования можно внести кремний и марганец. Первый вносится в целевую структуру в минимальном проценте (не более 0,4%) и особого влияния на изменение качеств заготовки не оказывает.

Тем не менее этот компонент, как и марганец имеет существенное значение как раскисляющее и связующее вещество.

Эти свойства легирующих элементов обуславливают базовую целостность структуры, которая еще в процессе легирования делает возможным органичное восприятие других, уже активных элементов и примесей.

Легированная сталь

Для чего в сталь вводятся легирующие элементы

  • Характеристика
  • Свойства
  • Марки

В современном мире имеется большое количество разновидностей стали. Это один из самых востребованных материалов, который используется практически во всех отраслях промышленности.

Легирующие элементы в жаропрочных сплавах

Для чего в сталь вводятся легирующие элементы

Калькулятор металлопроката

В статье рассказывается про применение различных легирующих элементов при производстве жаропрочных сталей и сплавов.

Практически все жаропрочные сплавы создаются на металлургических производствах с использованием технологии легирования.

Сущность технологии заключается в расширении химического состава и усложнении структуры базовой основы сплава путем введения в него различных легирующих элементов.

В конечном итоге сплав приобретает жаропрочность – способность длительное время сохранять механическую прочность и коррозионную стойкость при высоких температурах эксплуатации.

Пластическая деформация и разрушение сплава при интенсивном нагреве объясняется ослаблением и нарушением межатомных связей и диффузной ползучестью материала, краевой дислокацией в структуре кристаллической решетки. Чтобы сделать сплав жаропрочным, необходимо стабилизировать его структуру, предотвратить или свести к минимуму деформационные процессы, протекающие под воздействием высоких температур.

Для решения этих задач сплавы упрочняют легирующими элементами, которые повышают энергию, прочность и стабильность кристаллических связей, замедляют диффузию, оказывая влияние на увеличение размера зерен и упрочнение их границ, препятствуют рекристаллизации. Для наибольшего эффекта легирование выполняется не одним, а несколькими химическими элементами, которые помимо жаропрочности придают сплаву дополнительные технологические свойства.

Выбор химических элементов для легирования сплава с целью повышения его жаропрочности определяется свойствами, которые ему необходимо придать.

Среди часто применяемых для легирования элементов можно назвать никель (Ni), вольфрам (W), молибден (Mo), ванадий (V), кобальт (Co), ниобий (Nb), титан (Ti).

Каждый по-своему влияет на физические и химические характеристики сплава, поэтому, как правило, они вводятся в базовый состав комплексно, в различных комбинациях и пропорциях.

Например, молибден, титан и ниобий являются карбидообразователями.

Связывая содержащийся в сплаве углерод в прочные карбиды, они обеспечивают эффективное торможение дислокаций и диффузий, усиливают межатомные связи, способствую формированию более стабильной структуры материала и повышению его жаропрочности. Наличие в сплаве никеля обуславливает его сопротивление к окислению на воздухе, а в комбинации с кобальтом, никель способствует повышению длительной прочности сплава.

В металлургии для получения разных марок жаростойких сплавов, используют специальные полупродукты на основе железа (Fe), содержащие определенный процент необходимого легирующего элемента – ферросплавы.

Вводимые в жидкую субстанцию того или иного металла, ферросплавы, в виде чушек, блоков или гранул, значительно упрощают технологическую схему и сам процесс корректировки химического состава жаростойкого сплава.

Необходимо отметить, что ферросплавами условно называют и те полупродукты, где железо не является базовой основой, а содержится лишь в виде примеси. Сортамент ферросплавов для легирования жаростойких металлов весьма разнообразен. Наиболее важными ферросплавами в современной металлургии являются ферроникель, ферровольфрам, ферромолибден, феррованадий, феррониобий, ферротитан, феррокобальт.

Рисунок 1. Сводная таблица легирующих элеменнтов.

Никель

Никель повышает пластичность, вязкость, теплоемкость сплава, увеличивает его сопротивляемость к образованию трещин и коррозии, улучшает возможности термообработки.

В связи с этим ферроникель – один из самых распространенных и востребованных ферросплавов глобальной металлургической отрасли.

Мировые стандарты определяют пять марок ферроникеля, содержащего 20-70% никеля, плюс незначительное количество углерода (С), серы (S), фосфора (Р), кремния (Si), хрома (Cr), меди (Cu).

Легированные никелем жаропрочные сплавы, как правило, содержат 8-25% никеля, а некоторые до 35% и более.

Однако из-за того, что никель снижает твердость сплава, для легирования его обычно используют не в чистом виде, а в сочетании с железом, хромом, молибденом, титаном, ниобием и другими элементами.

В качестве примера можно привести сплавы марок 12Х18Н9Т (Fe – около 61%) и 10Х17Н13МЗТ (Fe – около 67%) с содержанием никеля 8-9,5% и 12-14% соответственно.

Молибден и вольфрам

На физические характеристики сталей и сплавов вольфрам и молибден оказывают схожее влияние, существенно увеличивая предел длительной механической прочности при температурах до 1800°C (в вакууме).

Достаточно ввести 0,3-0,5% этих элементов в сплав, чтобы заметно усилить его сопротивление ползучести, укрепить межатомные связи кристаллической решетки, повысить температурный предел рекристаллизации.

Для сталеплавильной и литейной промышленности производят легирующие ферросплавы из молибдена и вольфрама с железом: ферромолибден (55-60% Мо) и ферровольфрам (65-85% W).

Для легирования в сплавы обычно вводят относительно небольшое количество молибдена (около 0,2-20%) и вольфрама (до 10-12%), поскольку переизбыток этих элементов способен повысить хрупкость сплава при нагреве.

В качестве примера сплава, легированного молибденом и вольфрамом можно привести жаропрочную низколегированную сталь 12Х1МФ (Fe – около 96%) с содержанием Мо 0,25-0,35 процента.

В этом же ряду жаропрочная релаксационностойкая сталь 20Х3МВФ (Fe – около 93%) содержащая Мо 0,35-0,55% и W 0,3-0,5%, а также сплав на основе никеля ХН57МТВЮ (Мо 8.5-10%, W 1.5-2.5%, Fe 8-10% и т.п.)

Ванадий

Для легирования в сплавы обычно вводят относительно небольшое количество молибдена (около 0,2-20%) и вольфрама (до 10-12%), поскольку переизбыток этих элементов способен повысить хрупкость сплава при нагреве.

В качестве примера сплава, легированного молибденом и вольфрамом можно привести жаропрочную низколегированную сталь 12Х1МФ (Fe – около 96%) с содержанием Мо 0,25-0,35 процента.

В этом же ряду жаропрочная релаксационностойкая сталь 20Х3МВФ (Fe – около 93%) содержащая Мо 0,35-0,55% и W 0,3-0,5%, а также сплав на основе никеля ХН57МТВЮ (Мо 8.5-10%, W 1.5-2.5%, Fe 8-10% и т.п.)

С целью повышения характеристик по жаропрочности, состав легирующих элементов усложняется, часто вместе с ванадием в сплав вводятся молибден, хром, никель и т.п.

Показательным примером такой технологии легирования может служить жаропрочный сплав на основе железа марки 12Х2МФСР (Fe – около 95%) с содержанием V 0,2-0,35%, Мо 0,5-0,7%, Cr 1,6-1,9%, Ni до 0,25% и т.д.

Еще один пример мультилегирования сплава с применением ванадия – жаропрочная сталь 15Х2М2ФБС, включающая в себя V 0,25-0,4%, Мо 1,2-1,5 %, Cr 1,8-2,3%, Ni до 0,3% и т.д.

Специальные ферросплавы

Все используемые в литейном производстве жаропрочных сплавов ферросплавы условно делятся на две группы: первая — ферросплавы массового применения, вторая — специальные ферросплавы.

Ко второй группе относятся соединения железа с титаном, кобальтом, ниобием и рядом других элементов.

Специальные ферросплавы применяют в небольших пропорциях 4–6%, и не только для повышения рабочей температуры жаропрочных сплавов, но для придания им особых свойств.

Например, феррониобий применяется для легирования жаропрочных хромоникелевых сталей, поскольку ниобий эффективно препятствует межкристаллитной коррозии, разрушающей границы зерна и ведущей к потере прочности материала.

В свою очередь ферротитан вводится в жаропрочные сплавы для усиления общих антикоррозийных характеристик. Кроме того, титан улучшает свариваемость нержавеющих сталей.

Легирование жаропрочных сплавов феррокобальтом позитивно сказывается на их релаксационной стойкости, особенно это касается хромистых сталей.

Легирование стали

Для чего в сталь вводятся легирующие элементы

Легирование стали необходимо для изготовления инструментов и полупроводников. В первом случае особое внимание обращают на механические свойства, а во втором — на токопроводящие характеристики.

Это требует не только разных добавок (например, легирование стали алюминием), но и разных технологических процессов.

Легированная сталь представляет собой железоуглеродистый сплав с дополнительными элементами (никель, хром, молибден, кобальт и алюминий) для придания этой стали особых характеристик, таких как: устойчивость к коррозии, гибкость и твердость, что делает ее лучше обычной углеродной стали.

Сплавы, как правило, обозначаются в соответствии с преобладающими элементами, такими как никелевая сталь, хромистая сталь и хромованадиевая сталь. Сплавы можно встретить практически во всех отраслях промышленности, от гражданского строительства до судостроения, в нефтяной, автомобильной и авиационной отраслях.

Разнообразие возможных сплавов практически бесконечно, как и разнообразие характеристик.

Процесс легирования

Легированная сталь может быть произведена несколькими способами. Легирование  бывает поверхностным и объемным. В первом случае легирующие добавки вводятся только в верхний слой. Легирующий элемент проникает неглубоко, примерно на 1-2 мм.

Это необходимо для создания на поверхности металла определенных свойств (например, антифрикционных). Поверхностное легирование намного лучше напыления, а поэтому часто применяется при изготовлении керамики и стекла.

Введение добавок во весь объем металла предусматривается объемным легированием.

Легирующих добавок может быть несколько. Они могут быть как металлическими, так и не металлическими (например, фосфор). Для получения различных характеристик легирование может производиться на различных этапах плавки.

Добавление легирующих элементов направлено на создание микроструктурных изменений, которые, в свою очередь, способствуют изменению физико-механических свойств материала, позволяя ему выполнять определенные функции.

Легирование полупроводников проводится с помощью термодиффузии, нейтронно-трансмутационного легирования и ионной имплантацией. Ионное легирование проводится в два этапа. Сначала проводится загонка легирующих атомов, а затем их активируют.

Распределение элементов зависит от температуры и времени, глубина вхождения — от энергии. При термодиффузии происходит осаждение легирующих элементов, отжиг и удаление легирующих элементов.

Нейтронно-трансмутационное легирование происходит благодаря ядерным реакциям — в данном случае легирующие и легируемые элементы объединяются монокристаллический материал.

Свойства и назначение

Наиболее часто используемыми легирующими элементами являются никель, марганец, хром, кремний, свинец, селен и бор. Менее часто используются алюминий, медь, ниобий, цирконий и вольфрам.

Назначение этих элементов очень разнообразно, и при использовании в нужных пропорциях стали получают с определенными характеристиками, которые, однако, не могут быть достигнуты с обычными углеродистыми сталями.

Сплавы обычно классифицируются с учетом элементов, содержание которых наиболее велико, и которые называются базовыми компонентами. Элементы, которые находятся в меньшей пропорции, рассматриваются как вторичные компоненты.

Железо само по себе не особо прочное, но его прочность значительно возрастает, когда он легируется углеродом, а затем быстро охлаждается для производства стали. Некоторые характеристики стали — мягкая, полумягкая, полутвердая, твердая — в значительной степени обусловлены содержанием углерода, которое может составлять от 0,10 до 1,15%.

Риски

Некоторые ферросплавы производятся и используются в форме мелких частиц; переносимая по воздуху пыль представляет собой потенциальную опасность токсичности, пожара и взрыва.

 Кроме того, профессиональное воздействие паров при изготовлении некоторых сплавов может привести к серьезным проблемам со здоровьем.

Ряд сплавов олова опасен для здоровья (особенно при высоких температурах) из-за вредных свойств металлов, с которыми можно легировать олово (например, свинец).

Никель, осмий, рутений, медь, золото, серебро и иридий легируются платиной для повышения твердости. Сплавы, образованные с кобальтом, приобрели значение благодаря своим ферромагнитным свойствам. Родий используется в качестве антикоррозийного электролитического покрытия для защиты серебра от потускнения.

Родий легируется платиной и палладием, чтобы получить очень твердые сплавы.Цель легирования медью — повысить коррозионную стойкость.Также медью легируют серебро.

В чистом виде серебро слишком мягкое для изготовления монет, столовых приборов и украшений, для всех областей применения оно упрочняется путем легирования медью.

Черные сплавы

Черные сплавы — это железо и его сплавы. Значительное содержание углерода делает чугун очень хрупким. Несмотря на свою хрупкость и более низкие механические свойства, чем у стали, их низкая себестоимость, простота литья и специфические характеристики делают их одним из самых ценных в мире продуктов с самым большим тоннажем производства.

Цветные сплавы

Цветные сплавы — это сплавы, которые не содержат железа или содержат относительно небольшое количество железа. Их характеристики — значительная коррозионная стойкость, высокая электро- и теплопроводность, низкая плотность и простота производства.

Нержавеющая сталь

Общие характеристики нержавейки делают ее универсальным материалом, который хорошо адаптируется к требованиям сегодняшнего дня. Любые виды сплавов имеют свои преимущества в зависимости от химического состава.

Эстетика. Существует ряд видов отделки поверхности: от матовой до глянцевой, от сатиновой до гравировки. Отделка также может быть узорчатой или окрашенной, что делает нержавеющую сталь уникальным и эстетичным материалом. Архитекторы часто выбирают этот материал для строительных работ, дизайна интерьера и городской мебели.

Механические свойства.Нержавейка обладает лучшими механическими свойствами при комнатной температуре по сравнению с другими материалами, что является преимуществом в строительном секторе, так как позволяет снизить вес на м² или уменьшить размеры элементов конструкции.

Хорошая эластичность и твердость в сочетании с неплохой износостойкостью (трение, истирание, удары, эластичность…) позволяют использовать нержавейку в широком спектре проектов.

Кроме того, нержавейка может устанавливаться на стройплощадке, несмотря на зимние температуры, без риска хрупкости или поломки, что не препятствует удлинению сроков строительства.

Огнеупорность. По сравнению с другими металлами, нержавейка обладает лучшей огнеупорностью в конструкции благодаря высокой температуре плавления (выше 800 °C). Нержавейка не выделяет токсичных паров.

Коррозионная стойкость: при содержании хрома 10,5% нержавеющая сталь постоянно защищена пассивным слоем оксида хрома, который естественным образом образуется на ее поверхности при контакте с влажностью воздуха.

При повреждении поверхности пассивный слой восстанавливается. Это обеспечивает коррозионную стойкость.

Классификация легированных сталей

Сплавы разделяются на три категории: низколегированные, среднелегированные и высоколегированные. На степень легирования стали влияет средний уровень количества других включенных элементов. Граница, разделяющая категории, не очень ясна.

Классификация по содержанию легирующих элементов:

  • низколегированная (до 2,5%);
  • среднелегированная (до 10%);
  • высоколегированная (от 10% до 50%).

По практическому применению:

  • конструкционные (машиностроительные или строительные);
  • инструментальные;
  • специального назначения.

Маркировка легированных сталей

Требования оговаривает ГОСТ 4543-71. Легирующие добавки обозначаются так:

  • Н — никель,
  • Г — марганец,
  • Е — селен,
  • А — азот,
  • С — кремний,
  • Т — титан,
  • В — вольфрам,
  • Ф — ванадий,
  • Д — медь,
  • М — молибден,
  • X — хром.

После каждой буквы указывается количество элемента.Среднее содержание основных элементов указывается с точностью до 1%, углерод даётся в сотых долях процента. Первая цифра обозначает, сколько углерода содержит сталь.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.