Ферромагнитная нержавеющая сталь

Применение кобальта при производстве постоянных магнитов

Ферромагнитная нержавеющая сталь

Калькулятор металлопроката

В статье рассматривается применение кобальта для производства постоянных магнитов. Приведено описание магнитных свойств кобальта, примеры конкретных сплавов, рассмотрены их достоинства и недостатки.

Постоянный магнит – это искусственное изделие из магнитотвердого материала, обладающее высокой интенсивностью магнитной энергии и длительным периодом размагничивания.

Современные постоянные магниты изготавливают методом классического литья или по технологии порошковой металлургии путем штамповки или прессования (с последующим спеканием) мелкодисперсионных порошков различных сплавов и металлов, обладающих большим магнитным насыщением. Мощность и физические характеристики магнита определяются химическим составом, кристаллической структурой и пропорциями его компонентов. Произведенные по технологии прессования порошков постоянные магниты могут быть выполнены практически в любой геометрической форме (диск, цилиндр, куб, призма, кольцо и т.п.) и иметь различное направление магнитного поля.

Для изготовления постоянных магнитов используют металлы с выраженной ферромагнитной структурой — ферромагнетики.

При сплавлении ферромагнетиков происходит взаимная переориентация атомов их кристаллических решеток, вследствие чего магнитная восприимчивость сплава многократно увеличивается, он приобретает способность намагничиваться до насыщения даже при малых внешних магнитных полях и длительное время сохранять высокие магнитные свойства. К ферромагнетикам относятся железо, никель, кобальт, а также некоторые из их сплавов и соединений с неферромагнитными материалами.

Рисунок 1. Схема магнита.

Неметаллические соединения кобальта были известны в Египте и Китае более тысячи лет назад. Добавляя в жидкий раствор пигменты кобальта, в Северной Месопотамии делали голубое покрытие для керамических плиток, а в Поднебесной – подглазуровочный слой для знаменитого китайского фарфора. Впервые полученный в 1735 г.

шведским химиком Брандтом металлический кобальт вплоть до начала ХХ века практически не использовали в металлургии из-за неудачных экспериментов создать сплав с железом.

Сегодня кобальт является важным компонентом жаростойких и инструментальных сталей, а еще он стал одним из наиболее востребованных металлов для изготовления постоянных магнитов.

Кобальтовые стали и сплавы – это на текущий момент лучшие материалы для постоянных магнитов, на изготовление которых идет более 20% всего добываемого кобальта.

Металлический кобальт обладает большой индукцией насыщения, которая выражается в его уникальной способности при однократном намагничивании приобретать магнитную силу, многократно превосходящую мощность внешнего поля.

Еще одно важное свойство кобальта – он обладает большой величиной коэрцитивной силы (Hc), препятствующей размагничиванию и перемагничиванию материала.

Слово «коэрцитивный» происходит от латинского «coercitio», которое переводится как удерживание, поэтому данную характеристику можно описать как сохранение (удерживание) магнитной энергии.

Магнитная хромистокобальтовая сталь ЕХ5К5, содержащая по 5-6% кобальта и хрома обладает коэрцитивной силой до 170 эрстед (А/м) при остаточной индукции (Br) до 8500 гаусс (тесла).

Магнитный сплав кобальта с платиной по силе магнитной энергии вообще не имеет конкурентов, однако имеет довольно большую стоимость, что препятствует его широкому применению.

Точка Кюри у кобальта, существующая для каждого ферромагнетика, выраженная значением температуры фазового перехода, при достижении которой намагниченный до насыщения материал становится парамагнетиком и теряет свои магнитные свойства, значительно выше, чем у других металлов с ферромагнитной структурой. Для примера: точка Кюри для кобальта равна 1127°С, для железа 770°С, для никеля 358°С, для гадолиния 19°С. Этим объясняется стабильность свойств постоянных магнитов из кобальтосодержащих сплавов в широком температурном диапазоне.

Современные технологии позволяют точно определять химический состав сплава для постоянных магнитов, придавая им те характеристики, которые востребованы потребителями конечной продукции. Наиболее распространенными магнитами сегодня являются изделия из сплавов систем железо-никель-алюминий-кобальт (Fe-Ni-Al-Co) и самарий-кобальт (Sm-Co).

Магнитный сплав железо-никель-алюминий-кобальт (Fe-Ni-Al-Co)

Для обозначения магнитных сплавов на основе железа (Fe) с добавлением никеля (Ni), алюминия (Al) и кобальта (Co) чаще всего используют зарубежный термин «алнико» (англ. AlNiCo), по начальным буквам металлов: алюминия (10-18%), никеля (15-34%) и кобальта (18-40%). Российское название сплава – ЮНДК.

Указанные выше пропорции сплава обеспечивают постоянным магнитам большую величину индукции насыщения, а как следствие – большое значение остаточной индукции.

Кобальт в этом аспекте играет ключевую роль, поскольку чем больше в сплаве Со, тем выше индукция его насыщения и магнитная энергия, способная достигать значений 4000—5200 Дж/м3.

Плюсы и минусы магнитов железо-никель-алюминий-кобальт (Fe-Ni-Al-Co)
К недостаткам сплава Fe-Ni-Al-Co можно отнести не самую высокую коэрцитивную силу (Нс), колеблющуюся в пределах 36-58 эрстед (А/м), которую, кстати, можно повысить при производстве путем увеличения содержания алюминия и никеля. Магниты из сплава Fe-Ni-Al-Co, произведенные прессованием по порошковой технологии, имеют механическую прочность в несколько раз большую, чем литые, но уступают им по силе магнитной энергии на 10-20%. Безусловным плюсом постоянных магнитов Fe-Ni-Al-Co является высокая термическая стабильность, способность эффективно работать при температурах до 550°С, при этом их температура Кюри составляет 810 — 900°С. Постоянные магниты на основе сплава Fe-Ni-Al-Co обладают хорошей химической и коррозионной стойкостью, а также сравнительно невысокой стоимостью.

Магнитный сплав самарий-кобальт (Sm-Co)

Использование сплава самарий-кобальт (Sm-Co) для производства постоянных магнитов обуславливается тем, что он позволяет создавать относительно легкие изделия с очень большой магнитной силой, в том числе крайне малых типоразмеров для миниатюрной техники и устройств (часов, наушников, смартфонов, компьютеров).

Самарий (Sm) – редкоземельный металл, внешне напоминающий свинец, а по механическим свойствам схожий с цинком.

Постоянные магниты на основе сплава самария и кобальта в несколько раз превышают магнитные параметры ферритовых магнитов и лидируют в классе редкоземельных магнитов по максимальному значению коэрцитивной силы, которая у них может достигать 1000-1200 кЭ (кА/м), что на порядок выше аналогичного показателя сплава ЮНДК (Fe-Ni-Al-Co).

Достоинства и недостатки магнитов самарий-кобальт (Sm-Co)
Достоинства магнитов Sm-Co – хорошая прочность (порошковая металлургия) и большая величина остаточной индукции, отличная термическая стабильность при максимальных рабочих температурах 250-350°C, что объясняется температурой Кюри сплава в 720-800°C и выше. Магниты Sm-Co устойчивы к коррозии, воздействию климатических факторов, а потому не нуждаются в нанесении защитного покрытия, что позволяет их использовать в агрессивных средах с большими температурами, например, в нефтяных пластах. К недостаткам постоянных магнитов Sm-Co можно отнести их высокую стоимость.

С использованием кобальта производят большое количество магнитов, которые вследствие высоких магнитных свойств нашли широкое применение в электромашиностроении, станкостроении, приборостроении, в пищевой, нефтегазовой, космической отрасли и других сферах, где постоянный магнит используют в качестве элемента:

  • электродвигателей и генераторов;
  • преобразователей постоянного тока;
  • пускозащитной аппаратуры;
  • систем контроля целостности трубопроводов;
  • систем магнитной обработки и очистки различных сред;
  • дугогасительных устройств;
  • систем безбатарейной телефонной связи;
  • акустических систем и реле;
  • компьютерных комплектующих;
  • электросчетчиков, магнитоиндукционных тахометров, омметров, расходомеров (в металлургии), различной измерительной аппаратуры;
  • бытовых электроприборов.

Современные постоянные магниты чрезвычайно разнообразны по способу производства, по физическим и химическим характеристикам, по форме, цене, благодаря чему практически для любой цели можно подобрать оптимальное изделие. Количество сфер применения постоянных магнитов постоянно расширяется, а кобальтовые сплавы Fe-Ni-Al-Co и Sm-Co на сегодняшний день играют главную роль в развитии этой тенденции.

Рисунок 2. Электрический двигатель.

Ферритные свойства и применение нержавеющей стали 2020

Ферромагнитная нержавеющая сталь

Ферритные стали представляют собой высокохромистые, магнитные нержавеющие стали с низким содержанием углерода.

Известные своей хорошей пластичностью, стойкостью к коррозии и коррозионному растрескиванию под напряжением, ферритные стали обычно используются в автомобильной промышленности, посуде и промышленном оборудовании.

Характеристики ферритной нержавеющей стали

По сравнению с аустенитными сталями, которые имеют зернистую структуру с гранецентрированной кубической (FCC), ферритные стали определяются зернистой структурой с объемноцентрированной кубической (BCC).

Другими словами, кристаллическая структура таких сталей состоит из кубической атомной ячейки с атомом в центре.

Эта зерновая структура типична для альфа-железа и является тем, что дает ферритные стали их магнитные свойства.

Ферритные стали не могут быть упрочнены или усилены термообработкой, но имеют хорошую устойчивость к коррозионному растрескиванию. Они могут быть холодно обработаны и смягчены отжигом.

Несмотря на то, что ферритные сорта не обладают такой высокой прочностью или коррозионной стойкостью, как и аустенитные марки, они, как правило, обладают более высокими инженерными свойствами.

Хотя обычно очень свариваемые, некоторые марки ферритной стали могут быть подвержены сенсибилизации зоны термического воздействия сварного шва и горячего крекинга металла сварного шва.

Поэтому ограничения на свариваемость ограничивают использование этих сталей более тонкими датчиками.

Из-за их более низкого содержания хрома и никеля стандартные марки ферритной стали обычно дешевле, чем их аустенитные аналоги.

хрома может составлять от 10 до 27 процентов, и, как и мартенситные марки, в целом содержание никеля в общем случае практически отсутствует. Специальные сорта часто включают молибден и в меньшей степени используют алюминий и титан.

Ферритные сплавы из нержавеющей стали обычно можно разделить на пять групп, три семейства стандартных марок (группы 1-3) и два семейства сталей специального назначения (группы 4 и 5 ниже).

В то время как стандартные ферритные стали являются, по большому счету, самой большой потребляемой группой с точки зрения тоннажа, спрос на нержавеющие стали специального качества все более устойчиво.

Типы ферритной нержавеющей стали

  • Группа 1 (тип 409 / 410L): Они имеют самое низкое содержание хрома во всех нержавеющих сталях и идеально подходят для слабокоррозионных сред, где допустима локализованная ржавчина. Наименее дорогая из всех нержавеющих сталей типа 409 была первоначально создана для глушителей автомобильных выхлопных газов, но теперь их можно найти в автомобильных выхлопных трубах и корпусах каталитического нейтрализатора. Тип 410L часто используется для контейнеров, автобусов и ЖК-мониторов.
  • Группа 2 (тип 430): Наиболее часто используемая ферритная сталь типа 430 имеет более высокое содержание хрома и, следовательно, более устойчива к коррозии азотными кислотами, серосодержащими газами и многими органическими и пищевыми кислотами.В некоторых применениях этот сорт может использоваться в качестве замены для аустенитного сорта 304. Тип 430 часто встречается во внутренних приборах, включая барабаны для стиральной машины, кухонные раковины, столовые приборы, крытые панели, посудомоечные машины и другие кухонные принадлежности.
  • Группа 3 (тип 430Ti, 439 и 441): Обладая лучшей свариваемостью и формуемостью, чем ферритные листы из группы 2, сталь группы 3 может использоваться для замены аустенита аустенитного типа 304 в более широком диапазоне применений, в том числе в раковинах, обменных трубах, выхлопных системах и сварных частях стиральных машин.
  • Группа 4 (тип 434, 436, 444): При более высоком содержании молибдена эти ферритные марки нержавеющей стали обладают повышенной коррозионной стойкостью и используются в резервуарах для горячей воды, солнечных водонагревателях, частях выхлопной системы, электрических чайниках , элементы микроволновой печи, а также автомобильная поездка. В частности, класс 444 имеет эквивалент стойкости к истиранию (PRE) до уровня 316, что позволяет использовать его в агрессивных средах с наружной средой
  • Группа 5 (446, 445, 447): Эта группа нержавеющих сталей специального назначения характеризуется относительно высоким содержанием хрома. В результате получается сталь с отличной коррозионной и масштабирующей (или окисляющей) устойчивостью. Фактически, коррозионная стойкость класса 447 эквивалентна коррозионной стойкости металла титана. Молибден также обычно добавляют для улучшения коррозионной стойкости. Применения для стали группы 5 обнаружены в сильнокоррозионных прибрежных и морских средах.

Источники

Ассоциация развития нержавеющей стали в Южной Африке. Типы. URL: www. sassda. сотрудничество. za Международный форум по нержавеющей стали (ISSF). Ферритное решение .

URL: www. worldstainless. орг

Медицинская сталь магнитится или нет

Ферромагнитная нержавеющая сталь

Среди основных свойств металла выделяют степень магнетизма. В последнее время встречается просто огромное количество нержавеек, эксплуатационные характеристики которых могут существенно отличаться.

Во многом рассматриваемое свойство зависит от химического состава сплава. Самостоятельно проверить степень магнетизма достаточно сложно, так как оно может меняться в зависимости от эксплуатационных условий.

От чего зависят магнитные свойства материалов

Для определения магнитных свойств нержавейки и других сплавов используется определенная формула, в которой отражается коэффициент пропорциональности и магнитная восприимчивость. В зависимости от типа используемого коэффициента нержавеющая сталь входит в одну из нескольких групп:

  1. При коэффициенте выше нуля материал относится к группе парамагнетиков.
  2. При использовании нуля нержавейка относится к диамагнетикам.
  3. Ферромагнетики характеризуются хорошей магнитной восприимчивостью. В эту группу входят никель, кадмий и железо.

Магнитные свойства нержавейки

Нержавейка магнитится при воздействии определенного поля. Подобная реакция связана с особенностями структуры сплава, в некоторой степени, от химического состава. Некоторые вещества характеризуются тем, что реагируют на воздействие магнита.

Нержавеющие стали с хорошими магнитными свойствами

Магнитные свойства нержавеющей стали во многом зависят от структуры материала. Больше всего они проявляются в нижеприведенных случаях:

  1. Мартенсит характеризуется хорошими магнитными свойствами, является ферримагнетиком в чистом виде. Встречается подобная нержавейка крайне редко, так как чистый химический состав выдержать довольно сложно. Как и обычные углеродистые варианты исполнения, рассматриваемый может улучшаться при помощи закалки или отпуска. Подобный металл получил широкое распространение не только в промышленности, но и в быту. Наибольшее распространение получили следующие марки: 20Х13 и 40Х13. Они могут подвергаться механическому воздействию, шлифованию или полированию, а также различной термообработке. К особенностям химического состава можно отнести повышенную концентрацию хрома и углерода. 20Х17Н2 – еще одна нержавейка, которая характеризуется высокой концентрацией хрома. За счет этого структура становится более устойчивой к воздействию влаги и некоторых агрессивным средствам. Несмотря на большое количество легирующих элементов, спав поддается сварке и может подвергаться горячей или холодной штамповке.
  2. Феррит в зависимости от степени нагрева может применять две формы: ферромагнетика и парамагнетика. В химическом составе подобных материалов меньше углерода, за счет чего они становятся более мягкими и лучше поддаются обработке. В эту группу входит нержавейка 08Х13, которая активно применяется в пищевой промышленности. Кроме этого, в данную группу входят AISI 430, который применяется на пищевых производственных предприятиях.
  3. Мартенситно-ферритные сплавы характеризуются весьма привлекательными эксплуатационными качествами. Подобной структурой обладает сплав 12Х13. Как и предыдущие металлы, рассматриваемый может подвергаться механической и термохимической обработке.

Приведенная выше информация указывает на то, что наиболее ярко выраженные магнитные свойства у мартенситной структуры.

При выборе сплава следует учитывать, что не все нержавейки характеризуются устойчивостью к механическим повреждениям. Даже незначительное воздействие может привести к повреждению поверхностного слоя. Несмотря на то, что хромистая пленка способна восстанавливаться при контакте с кислородом, были выпущены новые сплавы, характеризующиеся повышенной механической устойчивостью.

Еще одна классификация металлов подразумевает их деление на следующие группы:

  1. С высокой степенью устойчивости к воздействию кислот.
  2. Жаропрочный вариант исполнения
  3. Пищевые нержавейки.

Жаропрочная нержавеющая сталь

Маркировка материала проводится при применении буквенно-цифрового обозначения. Каждый символ применяется для обозначения конкретного химического элемента, цифра указывает на концентрацию. В других странах применяются свои определенные стандарты для обозначения металла.

Нержавеющие стали, не обладающие магнитными свойствами

Есть довольно большое количество металлов, которые не обладают магнитными свойствами. В их состав включается никель и марганец. Выделяют следующие группы сплавов:

  1. Аустениты получили самое широкое распространение. В эту группу входят 08Х18Н10 и 10Х17Н13М2Т. эти металлы активно применяются при изготовлении различных изделий в пищевой промышленности, к примеру, столовых приборов и посуды. Повышенные коррозионные свойства выдерживаются практически в любой среде эксплуатации.
  2. Аустенитно-ферритные нержавейки 08Х22Н6Т и 08Х21Н6М2Т характеризуются повышенной концентрацией хрома и некоторых других легирующих элементов. Для изменения основных характеристик в состав включаются и другие химические элементы.

Магнитящиеся нержавеющие стали и коррозионностойкость

Ферромагнитная нержавеющая сталь

Бывают ли магнитящиеся нержавеющие стали и как это влияет на коррозионностойкость

На вопрос о том, магнитится ли нержавеющая сталь, однозначного ответа не существует, поскольку магнитные свойства сплавов определяются свойствами их структурных составляющих.

Классификация материалов по их магнитным свойствам

Тела, помещённые в магнитное поле, намагничиваются. Интенсивность намагничивания (J) прямо пропорциональна увеличению напряжённости поля (H):

J= ϰH, где ϰ – коэффициент пропорциональности, называемый магнитной восприимчивостью.

Если ϰ>0, то такие материалы называют парамагнетиками, а если ϰ

Некоторые металлы – Fe, Co, Ni, Cd – обладают чрезвычайно большой положительной восприимчивостью (около 105), они называются ферромагнетиками. Ферромагнетики интенсивно намагничиваются даже в слабых магнитных полях.

Нержавеющие стали промышленного назначения могут содержать в своей структуре феррит, мартенсит, аустенит или комбинации этих структур в разных соотношениях. Именно фазовыми составляющими и их соотношением определяется – магнитится нержавейка или нет.

Магнитная нержавеющая сталь: структурный состав и марки

Существуют две фазовые составляющие стали с сильными магнитными характеристиками:

  • Мартенсит, с точки зрения магнитных свойств, является чистым ферромагнетиком.
  • Феррит может иметь две модификации. При температурах, которые находятся ниже точки Кюри, он, как и мартенсит, ферромагнетик. Высокотемпературный дельта-феррит – парамагнетик.

Таким образом, коррозионностойкие стали, структура которых состоит из мартенсита, – это магнитная нержавейка. Эти сплавы реагируют на магнит, как обычная углеродистая сталь. А ферритные или феррито-мартенситные стали могут иметь различные свойства, зависящие от соотношения фазовых составляющих, но, чаще всего, и они ферромагнитны.

К данной категории относятся хромистые и некоторые хромникелевые стали. Они разделяются на следующие подгруппы:

  • Мартенситные стали твёрдые, упрочняются закалкой и отпуском, как обычные углеродистые стали. Применяются они в основном для производства столовых приборов, режущего инструмента и в общем машиностроении.

Стали 20Х13, 30Х13, 40Х13 мартенситного класса производятся преимущественно в термически обработанном шлифованном или полированном состоянии

Хромоникелевая сталь мартенситного класса 20Х17Н2 обладает более высокой коррозионной стойкостью, чем 13%-ые хромистые стали. Эта сталь отличается высокой технологичностью – хорошо поддаётся штамповке, горячей и холодной, обрабатывается резанием, может свариваться всеми видами сварки.

  • Ферритные стали типа 08Х13 мягче мартенситных из-за меньшего содержания углерода. Одна из самых потребляемых сталей ферритного класса – магнитный коррозионностойкий сплав AISI 430, который является улучшенным аналогом марки 08Х17. Эта сталь применяется для изготовления технологического оборудования пищевых производств, используемого при мойке и сортировке пищевого сырья, измельчения, разделения, сортировки, расфасовки, транспортировки продукции.
  • Ферритно-мартенситные стали (12Х13) имеют в структуре мартенсит и структурно-свободный феррит.

Немагнитная нержавеющая сталь

К немагнитным сплавам относятся хромоникелевые и хромомарганцевоникелевые стали следующих групп:

  • Аустенитные стали по объёму производства занимают ведущее место. Широко распространена нержавейка немагнитная аустенитного класса – сталь AISI 304 (аналог – 08Х18Н10). Этот материал применяется в производстве оборудования для пищевой промышленности, изготовления тары для кваса и пива, испарителей, столовых приборов – кастрюль, сковород, мисок, раковин для кухни, в медицине – для игл, судового и холодильного оборудования, сантехнического оборудования, резервуаров для жидкостей различного состава и назначения и сухих веществ. Стали 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т (используется в метизах А2), 10Х17Н13М2Т (используется в метизах для использования в агрессивных средах, кислотостойких и соленых, А4) имеют прекрасную технологичность и высокую коррозионную стойкость даже в парах химических производств и океанских водах.
  • Аустенитно-ферритным сталям характерно высокое содержание хрома и пониженное содержание никеля. Дополнительными легирующими элементами являются молибден, медь, титан или ниобий. Эти стали (08Х22Н6Т, 12Х21Н5Т, 08Х21Н6М2Т) имеют некоторые преимущества перед аустенитными сталями – более высокую прочность при сохранении требуемой пластичности, большую стойкость к межкристаллитной коррозии и коррозионному растрескиванию.

К группе немагнитных материалов относятся также коррозионностойкие аустенитно-мартенситные и аустенитно-карбидные стали.

Способ определения, является ли немагнитная сталь коррозионностойкой

Как показывает изложенная выше информация, однозначного ответа на вопрос – нержавейка магнитится или нет – не существует.

Если сталь магнитится, можно ли узнать, является ли она коррозионностойкой? Для ответа на этот вопрос необходимо зачистить небольшой участок детали (проволоки, трубы, пластины) до блеска.

На зачищенную поверхность наносят и растирают две-три капли концентрированного раствора медного купороса. Если сталь покрылась слоем красной меди – сплав не является коррозионностойким.

Если никаких изменений на поверхности материала не произошло, то перед вами нержавеющая сталь.

Проверить в домашних условиях, относится ли сталь к группе пищевых сплавов, невозможно.

Магнитные свойства нержавеющей стали никак не влияют на эксплуатационные характеристики, в частности, на коррозионную стойкость материала.

Получив необходимую информацию вы можете подобрать необходимые Вам метизы и крепёж из нержавеющих сталей в нашем магазине: http://lednik.com.ua/shop

Как определить нержавеющую сталь: способы и материалы

Ферромагнитная нержавеющая сталь

Нержавеющая сталь – наименование группы железных сплавов, в состав которых добавлены коррозионностойкие металлы. В качестве добавок используют углерод, титан, медь, а также в состав входят от 12 до 25 % хрома и никеля. Легированные стальные сплавы не подвержены коррозионным поражениям, устойчивы к воздействию влаги, агрессивных сред, щелочей и кислот.

Из нержавейки производят посуду, ножи, элементы станков, автомобилей и промышленного оборудования, особенно в химической и нефтепромышленности. Такой лом принимают по высокой цене, которая зависит от состава. Наиболее дороги сплавы с повышенным содержанием никеля (от 10 %). Чтобы получить максимальную прибыль от сдачи металлолома, важно знать, как определить нержавейку?

Металлы и сплавы, которые часто путают

Серебристый сплав железа и хрома подходит для производства кухонной утвари, медицинских инструментов, подшипников, режущих элементов и т.д. Но эти предметы также изготавливают из следующих материалов:

  • никелированная латунь (белый сплав меди с содержанием цинка более 25 %);
  • мельхиор (серебристо-белый металл из сплава меди с никелем);
  • белая медь (сплав, содержащий не менее 25 % никеля).

Полированный алюминий, нихром, нейзильбер и другие сплавы, используемые для производства посуды, ножей, бижутерии, легко спутать с легированной сталью.

Несмотря на сходный состав и высокое содержание никеля, в пункте сбора металлолома их легко отличат и не примут по желаемой цене.

Определить, алюминий или нержавейка попала к вам в руки, можно несколькими способами: химическими, механическими и др.

Анализ с помощью магнита

В лабораториях крупных пунктов приема установлен спектрометр – оптический прибор для спектроскопических исследований. Он оснащен интерферометром для оценки интенсивности спектральных линий и измерения длины волн. Полученные данные обрабатывает компьютер, выдавая точное заключение о составе сплава.

Если нужно определить нержавейку в домашних условиях, используют подручные, но относительно надежные средства. Одно из них – магнит: принято считать, что нержавейка не магнитит. Однако этот метод диагностики недостаточно точен, ведь мартенситные и ферритные сплавы имеют магнитные свойства.

С помощью магнита можно определить только аустенитные и аустенитно-ферритные сплавы с высоким содержанием хрома и никеля. Из них производят посуду, сантехническое и холодильное оборудование, тару для пищевых жидкостей и т.д. Вопреки распространенному мнению, точно определить нержавейку магнитом нельзя, но можно приблизительно выявить ее разновидность.

Определяем пищевую нержавейку

Как указано выше, магнит помогает определить пищевую нержавейку в домашних условиях. Не реагируют на соприкосновение с ним сплавы с низким содержанием углерода и большим количеством никеля в составе. Нержавеющая сталь с высоким содержанием углерода (более 0,9 %) обладает магнитными свойствами и запрещена к применению в пищевой промышленности.

Также, чтобы определить пищевую нержавейку, используют различные кислоты (лимонную, винную, уксусную и др.). Сплавы для применения в пищевой сфере содержат больше легирующих добавок, поэтому их поверхностная пленка крепче и почти не содержит железа.

Для дополнительной защиты от коррозии применяют пассивацию – метод обработки поверхности металла, в результате которой снижается его активность, и он не вступает в окислительные реакции.

Под действием перечисленных кислот нержавейка может покрыться легкой патиной, что и указывает на ее непищевое предназначение.

Типы и марки немагнитных сталей

Если происхождение изделия известно, по реакции с магнитом можно примерно определить тип нержавеющей стали. Следующие марки не магнитят:

  • AISI 409 (аналог 08Х13) – из этой ферритной стали производят контейнеры для грузоперевозок, детали для выхлопной системы автомобиля и т.д. (пластичность и отсутствие магнитных свойств обусловлены предельно низким содержанием C – менее 0,03 %);
  • AISI 304 (аналог 8-12X18H10) – из нее изготавливают предметы быта, а также посуду и оборудование для пищей и фармацевтической промышленности;
  • 12Х21НБТ (ЭИ8П) – аустенитно-ферритная сталь для применения в средах средней агрессивности, из которой производят тару и оборудование для химической и фармацевтической промышленности.

Не магнитят нержавеющие стали марок AISI 402–420, которые содержат в своем составе от 11 д 14 % хрома и менее 0,07 % углерода.

Магнитная нержавейка

Магнитные свойства есть у стали AISI 430 (аналог 08Х17, в составе которой – от 15 % хрома).

Из нее производят проволочные сетки, трубы для транспортировки нефтепродуктов, элементы технологических установок газа- и нефтепереработки.

Марка стали AISI 630 содержит до 5 % никеля и хрома, а также большое количество добавок: меди, титана, молибдена. Ее применяют в приборостроении и металлургии.

https://www.youtube.com/watch?v=5tbPTo_EF6Q

Определить нержавеющую сталь можно, даже если она магнитная. Для этого поместите образец материала в 2 % уксус или другую агрессивную среду на 1–2 дня. Коррозионностойкие сплавы пройдут это испытание без видимых изменений, а металлы, подверженные коррозии, потемнеют.

Определить магнитную нержавеющую сталь в домашних условиях также поможет медный купорос. Предварительно зачистите поверхность металла наждачной бумагой, а затем нанесите несколько капель концентрированного вещества (ржавеющие сплавы покрываются красной пленкой).

Проверка искрой

Тест металла на цвет искры – распространенный способ сортировки металлолома, который используют даже специалисты. Определить марку нержавеющей стали можно по следующими факторам:

  • количество искр и вспышек, которое прямо пропорционально объему углерода в составе сплава;
  • цвет искр, которые указывает на состав металла (чем он светлее, тем выше вероятность, что перед вами – низкоуглеродистая сталь);
  • наличие блестящих белых искр, которое указывает на высокое содержание титана в составе.

Для проведения теста необходима угловая шлифовальная машинка (болгарка). Начните шлифовать поверхность стали и проследите за реакцией. Достаточно точно определить металл или нержавейку помогут цвет, длина и форма искр.

«Желтый поток» или «белая вилка»

Существует много видов искр: «вилка», «веточка», «стрела» и др. Различать их учатся с опытом, но даже неподготовленный человек сможет отличить плотный и короткий поток вспышек от длинных и редких искр, характерных для нержавеющей стали. Наличие темных красных искр, выходящих из-под шлифовального круга, свидетельствует о высоком содержании никеля, карбида вольфрама и кобальта.

Если в процессе шлифовки появляется поток средней плотности, при этом искры у основания соломенно-желтые, а на конце белые, перед вами нержавеющая сталь.

Длинный поток искр, достигающий 1,5 метров, указывает на наличие в составе азота.

В этом случае несложно определить марку нержавеющей стали: азотистые легированные сплавы достаточно редки и их всего несколько (Nitrobe 77, Sandvik™ 14C28N, Böhler N680 и др.).

От чего зависит цена?

Низкоуглеродистые коррозионностойкие сплавы используют для производства самых разных изделий: лезвий, профилированных листов, кровельных материалов, медицинских принадлежностей. Лом нержавейки можно собрать при демонтаже старого забора, разборе старого холодильника, выбросе ненужной кухонной утвари и т.д. При этом потенциальный доход будет зависеть от таких факторов:

  • вид стали (аустенитная, ферритная, мартенситная и др.);
  • марка стали (AISI 304, AISI 630, 12Х21НБТ);
  • вид металлопроката (листовой, сортовой, трубный);
  • толщина листа;
  • состав;
  • качество.

Определить марку нержавейки и состав можно в лабораторных условиях, обратившись в надежный пункт приема. У нас есть необходимое оборудование для анализа состава, оценки качества и проверки радиационной активности цветного лома. Но предварительно оценить металлолом вы можете дома.

Как оценить качество?

Качество нержавеющей стали зависит от разных факторов – от количества добавок до способа соединения. В местах образования сварных швов антикоррозийные свойства металла значительно ухудшаются, что со временем приводит к появлению ржавчины и постепенному разрушению материала.

Окрашенные профилированные листы придется очищать от покрытия, шлифовать, повреждая защитный слой на поверхности. Соответственно, металл станет менее стойким к воздействию влаги, его качества ухудшатся, а потому и цена такого лома будет ниже. Предварительно оценить свойства стали можно соленым раствором.

Он не должен оставить пятен на поверхности высоколегированной стали. А от воды на некачественной нержавейке останутся желтоватые разводы.

Самые дорогие виды нержавейки

На стоимость влияет количество никеля в сплаве: у самых дешевых видов его содержание не превышает 5 %. Наиболее дороги высоколегированные сплавы с примесью никеля от 12 %.

В числе дорогостоящего лома – сантехнические фитинги и кольца, проволока и различные электрические соединители (разъемы, переходники и др.).

Также высоко ценят штейн (побочный продукт цветной металлургии) с содержанием никеля свыше 35 %, хотя его и относят к шлакам.

Но наиболее распространена марка стали A2 с содержанием примерно 10 % никеля и 18 % хрома. Обычно из нее производят предметы домашнего обихода. Чтобы узнать точную цену, посетите наш пункт приема: для оценки лома специалисты должны осмотреть металл, оценить степень засоренности, состав и свойства.

Ферромагнитные материалы

Ферромагнитная нержавеющая сталь

Любой ферромагнетик принадлежит к одной из двух групп: магнитно-мягких, либо магнитно-твердых.

Ферромагнитные материалы магнитно-мягкой группы

Данные материалы активно используются в магнитопроводах разнообразных технических изделий с постоянным, либо переменным (к примеру, в трансформаторных магнитопроводах) магнитным потоком.

Они характеризуются небольшой (не более 400А/м) коэрцитивной силой при хороших показателях магнитной проницаемости (далее: проницаемости), и невысоких потерях гистерезисной природы.

Сюда входят: техническое железо, а также, оксидные ферромагнетики, некоторые марки стали: низкоуглеродистой и электротехнической листовой, а также перамаллои (железно-никелевые сплавы, с высокой проницаемостью).

Техническое железо, содержит не свыше 0,04% углерода, а также различные стали и чугун часто используют в магнитопроводах, которые работают в постоянном магнитном поле. У него высокие показатели индукции насыщения (до 2,2 Тл) и проницаемости при небольшой коэрцитивной силе.

К электротехническим сталям принадлежат сплавы железа с кремнием, которого может содержаться 1 – 4%. Варьируя процент кремния, а также, используя различные технологические методы, получают материалы с различающимися магнитными параметрами.

Наличие кремния способствует улучшению магнитных параметров железа: повышению как начальной, так и наивысшей проницаемости при дополнительном снижении и коэрцитивной силы, и гистерезисных энергопотерь. При этом повышается сопротивление, что также полезно, поскольку в результате, становится меньше т.н.

вихревых токов, неизбежно образующихся при повторяющихся изменениях параметров поля. Именно эти токи являются одной из основных причин нагрева магнитопроводов.

Электротехнические стали с невысоким процентом кремния характеризуются слабой проницаемостью при высоких показателях индукции насыщения и значительными удельными потерями. Их используют в различных потребителях постоянного, либо, низкочастотного переменного тока.

Сталь с более высоким процентом кремния используют при необходимости хорошей проницаемости в условиях слабых, либо средних полей, минимизации потерь от вихревых токов и гистерезиса.

Данные стали могут использоваться в магнитопроводах, которые работают при высокочастотном переменном токе.

Пермаллои

Этим термином обозначается ряд сплавов железа и никеля. компонентов в них различается, также, в состав некоторых из пермаллоев могут входить другие легирующие добавки вроде молибдена или хрома. Все пермаллои отличаются превосходной проницаемостью, превосходя по данному показателю электротехническую (кремниевую) сталь в 10-15 раз.

Показатели напряженности поля, необходимой для достижения индукции насыщения у этих сплавов невысоки (от десятых долей до сотен А/м) и зависят от конкретного сплава. У одних индукция насыщения очень низка, их Bs может составлять 0,6-0,8 Тл, у других – значительно выше: 1,3-1,6 Тл.

К первой категории относятся сплавы с большим содержанием никеля. К примеру сплав, состоящий из никеля на 79% при 3,8% молибдена имеет следующие характеристики: μн=22000; μmax=120000; Bs=0,75Тл. К другой категории принадлежат пермаллои, где содержится значительно меньше никеля.

Так, у сплава с содержанием никеля 45% характеристики следующие: μн =2500; μmax=23000; Bs=1,5Тл.

Рисунок 1 — Петля гистерезиса пермаллоев

В пермаллоях, где петля гистерезиса имеет форму, напоминающую прямоугольник (рис.

1), уровень её близости к классической прямоугольной форме соответствует отношению значений остаточной (Br) к наибольшей (Bmax) индукции. За Bmax здесь принимается показатель индукции в поле, с напряженностью выше коэрцитивной силы в 5-10 раз.

Данное отношение может составлять до 0,85-0,99. Коэрцитивная сила у подобных пермаллоев составляет от 1 до 30 А/м.

Магнитные качества пермаллоев во многом определяются не только их составом, но и методом их производства.

Ферриты

К группе ферритов относятся ферромагнетики, получаемые смешиванием окислов нескольких элементов, в число которых обязательно входит железо и цинк. Процесс их изготовления состоит в следующем. Сначала нужная смесь измельчается, затем спрессовывается и отжигается при 1200°С. В результате получается готовый магнитопровод заданной формы.

У ферритов весьма значительно удельное сопротивление, поэтому потери от вихревых токов минимальны. Это делает их востребованными для использования при высокочастотных токах.

Начальная проницаемость ферритов также весьма значительна при невысокой индукции насыщения (0,18 — 0,32 Тл) и небольшой коэрцитивной (8 – 80 А/м) силе.

Магнитодиэлетрики

Материалы данной группы получают смешиванием мелкофракционного ферромагнитного порошка с различными изолирующими материалами (обычно: полиэтилен или ПВХ) с последующей формовкой, прессовкой и запеканием. В результате, микроскопические частицы ферромагнетика разделяются тонким слоем непроводящего ток и немагнитного вещества.

Магнитодиэлектрики (так же, как и ферриты) служат для производства сердечников в разнообразных электромагнитных изделиях: приемниках, передатчиках, усилителях, компьютерах и т.д.

Рисунок 2 — Статическая петля магнитного гистерезиса магнитопровода ГАММАМЕТ 412А

Работы над созданием новых типов магнитно-мягких материалов продолжаются и сейчас. Так, недавно специалистами фирмы ГАММАМЕТ был создан магнитопровод ленточного типа «гаммамет 412А». Его изготавливают из специальной ленты с нанокристаллическим строением, толщина которой составляет 25 мкм.

Саму ленту получают скоростным закаливанием одного из сплавов, где главной составляющей служит железо. Затем магнитопроводы подвергают термообработке в условиях продольного магнитного поля. После этого их петля гистерезиса приобретает форму очень близкую к правильной прямоугольной (рис. 2).

Соответственно данные магнитопроводы характеризуются минимальными показателями удельных магнитных потерь.

Такие магнитопроводы сохраняют свои качества при температурах среды от -60 до +125°С и способны прослужить 30 лет. ТУ обеспечены коэффициентом соответствия прямоугольной форме Br/B10 > 0,85.

Гаммамет 412А способен стать хорошей заменой ферритам и другим материалам, имеющим петлю гистерезиса близкую к прямоугольной форме. Среди перспективных сфер использования: различные магнитные устройства и установки, насыщающие дроссели и т.д.

Ферромагнитные материалы магнитно-твердой группы

Из материалов данной группы производят практически все постоянные магниты. Все они характеризуются значительными величинами как коэрцитивной силы, так и остаточной индукции.

Сюда относят углеродистую, а также некоторые марки легированной (хромом, кобальтом или вольфрамом) стали. Величина коэрцитивной силы варьируется в границах от 5000 до 8000 А/м при величине остаточной индукции в 0,8 – 1 Тл. Все эти стали достаточно пластичны, их можно ковать, прокатывать и обрабатывать резанием. Промышленность их производит листами и полосами.

Наилучшие магнитные параметры среди материалов этой группы имеют сплавы «альни», «альнико» и т.д. Их коэрцитивная сила составляет Hc = 20 000 — 60 000 А/м, при величине остаточной индукции в Br = 0,4 — 0,7 Тл.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.