Кристаллическая структура меди

Кристаллическая структура меди

Кристаллическая структура меди

Медь, которая относиться к цветным металлам, известна с давних пор. Ее производство было изобретено раньше, чем люди начали изготавливать железо.

По предположениям активное ее использование произошло в результате ее доступности и достаточно простого извлечения из содержащих медь соединений и сплавов.

Итак, давайте рассмотрим сегодня свойства и состав меди, страны мира-лидеры по производству меди, изготовление изделий из нее и особенности этих сфер.

Медь обладает высоким коэффициентом электропроводимости, что послужило росту ее ценности, как электротехнического материала. Если ранее на электропровод тратилось до половины всей произведенной в мире меди, то сейчас с этими целями используется алюминий, как более доступный металл. А сама медь становиться наиболее дефицитным цветным металлом.

В этом видео рассмотрен химический состав меди:

Структурный состав меди включает в себя множество кристаллов: никель, золото, кальций, серебро, свинец и многие другие. Все металлы, входящие в ее структуру, отличаются относительной мягкостью, пластичностью и простотой обработки. Большинство таких кристаллов в сочетании с медью образуют твердые растворы с непрерывными рядами.

Элементарная ячейка данного металла представляет собой кубическую форму. На каждую такую ячейку приходится по четыре атома, располагающихся на вершинах и центральной части грани.

Химический состав

Состав меди в процессе ее производства может включать в себя ряд примесей, которые влияют на структуру и характеристики конечного продукта. При этом их содержание должно регулироваться как по отдельным элементам, так и по их суммарному количеству. К примесям, которые встречаются в составе меди, можно отнести:

  • Висмут. Этот компонент негативно сказывается как на технологических, так и на механических свойствах металла. Именно поэтому он не должен превышать 0,001% от готового состава.
  • Кислород. Считается наиболее нежелательной примесью в составе меди. Его предельное содержание в сплаве составляет до 0,008% и стремительно сокращается в процессе воздействия высоких температур. Кислород негативно отражается на пластичности металла, а также на его устойчивости к коррозии.
  • Марганец. В случае изготовления проводниковой меди негативно отображается данный компонент на ее токопроводимости. Уже при комнатной температуре быстро растворяется в меди.
  • Мышьяк. Этот компонент создает твердый раствор с медью и практически не влияет на ее свойства. Его действие по большей мере направлено на нейтрализацию негативного воздействия от сурьмы, висмута и кислорода.
  • Никель. Образует твердый раствор с медью и при этом снижает ее тепло- и электропроводность.
  • Олово. Создает твердый раствор и способствует усилению теплопроводности.
  • Селен, сера. Эти два компонента имеют одинаковое воздействие на конечный продукт. Они организуют хрупкое соединение с медью и составляют не более 0,001%. При увеличении концентрации резко снижается степень пластичности меди.
  • Сурьма. Данный компонент хорошо растворяется в меди, поэтому оказывает минимальное воздействие на ее конечные свойства. Допускается ее не больше 0,05% от общего объема.
  • Фосфор. Служит главным раскислителем меди, предельная растворимость которого составляет 1,7% при температуре 714°С. Фосфор, в сочетании с медью, не только способствует ее лучшему свариванию, но и улучшает ее механические свойства.
  • Цинк. Содержится в небольшом количестве меди, практически не влияет на ее тепло- и электропроводность.

Далее будут рассмотрены процесс и правильная последовательность производства меди.

Производство меди

Медь производится из сульфидных руд, которые содержат эту медь в объеме минимум 0,5%. В природе существует около 40 минералов, содержащих данный металл. Наиболее распространенным сульфидным минералом, который активно используется в производстве меди, является халькопирит.

Для производства 1 т меди необходимо взять огромное количество сырья, которое ее содержит. Взять, к примеру, производство чугуна, для получения этого металла в объеме 1 тонны потребуется переработать около 2,5 т железной руды. А для получения такого же количества меди потребуется обработка до 200 т руды ее содержащей.

Далее рассмотрены способы производства меди и оборудование для этого.

ниже расскажет о добыче меди:

Производство меди включает в себя ряд этапов:

  1. Измельчение руды в специальных дробилках и последующее более тщательное ее измельчение в мельницах шарового типа.
  2. Флотация. Предварительно измельченное сырье смешивается с малым количеством флотореагента и затем помещается во флотационную машину. В качестве такого добавочного компонента обычно выступает ксантогенат калия и извести, который в камере машины покрывается минералами меди. Роль извести на этом этапе крайне важна, поскольку она предупреждает обволакивание ксантогената частичками других минералов. К медным частичкам прилипают лишь пузырьки воздуха, которые выносят ее на поверхность. В результате этого процесса получается медный концентрат, который направляется удаление из его состава избыточной влаги.
  3. Обжиг. Руды и их концентраты проходят процесс обжига в моноподовых печах, что необходимо для выведения из них серы. В результате получается огарок и серосодержащие газы, которые в дальнейшем используют для получения серной кислоты.
  4. Плавка шихты в печи отражательного типа. На этом этапе можно брать сырую или уже обожженную шихту и подвергать ее обжигу при температуре 1500°С. Важным условием работы является поддержанием нейтральной атмосферы в печи. В итоге происходит сульфидирование меди и ее преобразование в штейн.
  5. Конвертирование. Полученная медь в сочетании с кварцевым флюсом продувается в специальном конвекторе на протяжении 15-24 ч. В итоге получается черновая медь в результате полного выгорания серы и выведения газов. В ее состав может входить до 3% различных примесей, которые благодаря электролизу выводятся наружу.
  6. Рафинирование огнем. Металл предварительно расплавляется и затем рафинируется в специальных печах. На выходе образуется красная медь.
  7. Электролитическое рафинирование. Этот этап проходит анодная и огневая медь для максимальной очистки.

Про заводы и центры производства меди в России и в мире читайте ниже.

Интересное о меди

Изначально процесс восстановления этого металла выглядел очень примитивно: медную руду просто нагревали на кострах, а затем подвергали резкому охлаждению, что приводило к растрескиванию кусков руды, из которых уже можно было извлекать медь.

Дальнейшее развитие такой технологии привело к тому, что в костры начали вдувать воздух: это повышало температуру нагревания руды. Затем нагрев руды стали выполнять в специальных конструкциях, которые и стали первыми прототипами шахтных печей.

О том, что медь используется человечеством с древних времен, свидетельствуют археологические находки, в результате которых были найдены изделия из данного металла.

Историками установлено, что первые изделия из меди появились уже в 10 тысячелетии до н.э, а наиболее активно она стала добываться, перерабатываться и использоваться спустя 8–10 тысяч лет.

Естественно, предпосылками к такому активному использованию данного металла стали не только относительная простота его получения из руды, но и его уникальные свойства: удельный вес, плотность, магнитные свойства, электрическая, а также удельная проводимость и др.

В наше время уже сложно найти медь в природе в виде самородков, обычно ее добывают из руды, которая подразделяется на следующие виды.

  • Борнит — в такой руде медь может содержаться в количестве до 65%.
  • Халькозин, который также называют медным блеском. В такой руде меди может содержаться до 80%.
  • Медный колчедан, также называемый халькопиритом (содержание до 30%).
  • Ковеллин (содержание до 64%).

Халькопирит

Медь также можно извлекать из множества других минералов (малахит, куприт и др.). В них она содержится в разных количествах.

Физические свойства

Медь в чистом виде представляет собой металл, цвет которого может варьироваться от розового до красного оттенка.

Радиус ионов меди, имеющих положительный заряд, может принимать следующие значения:

  • если координационный показатель соответствует 6-ти — до 0,091 нм;
  • если данный показатель соответствует 2 — до 0,06 нм.

Радиус атома меди составляет 0,128 нм, также он характеризуется сродством к электрону, равном 1,8 эВ. При ионизации атома данная величина может принимать значение от 7,726 до 82,7 эВ.

Медь — это переходный металл, показатель электроотрицательности которого составляет 1,9 единиц по шкале Полинга. Кроме этого, его степень окисления может принимать различные значения.

При температурах, находящихся в интервале 20–100 градусов, его теплопроводность составляет 394 Вт/м*К.

Электропроводность меди, которую превосходит лишь серебро, находится в интервале 55,5–58 МСм/м.

Так как медь в потенциальном ряду стоит правее водорода, она не может вытеснять этот элемент из воды и различных кислот.

Ее кристаллическая решетка имеет кубический гранецентрированный тип, величина ее составляет 0,36150 нм. Плавится медь при температуре 1083 градусов, а температура ее кипения — 26570.

Физические свойства меди определяет и ее плотность, которая составляет 8,92 г/см3.

Самородная медь

Из ее механических свойств и физических показателей стоит также отметить следующие:

  • термическое линейное расширение — 0,00000017 единиц;
  • предел прочности, которому медные изделия соответствуют при растяжении, составляет 22 кгс/мм2;
  • твердость меди по шкале Бринелля соответствует значению 35 кгс/мм2;
  • удельный вес 8,94 г/см3;
  • модуль упругости составляет 132000 Мн/м2;
  • значение относительного удлинения равно 60%.

Совершенно уникальными можно считать магнитные свойства данного металла, который является полностью диамагнитным.

Именно эти свойства, наряду с физическими параметрами: удельным весом, удельной проводимостью и другими, в полной мере объясняют широкую востребованность данного металла при производстве изделий электротехнического назначения. Похожими свойствами обладает алюминий, который также успешно используется при производстве различной электротехнической продукции: проводов, кабелей и др.

Основную часть характеристик, которыми обладает медь, практически невозможно изменить, за исключением предела прочности.

Данное свойство можно улучшить практически в два раза (до 420–450 МН/м2), если осуществить такую технологическую операцию, как наклеп.

Химические свойства

Химические свойства меди определяются тем, какое положение она занимает в таблице Менделеева, где она имеет порядковый номер 29 и располагается в четвертом периоде.

Что примечательно, она находится в одной группе с благородными металлами.

Это лишний раз подтверждает уникальность ее химических свойств, о которых следует рассказать более подробно.

Оттенки медных сплавов

В условиях невысокой влажности медь практически не проявляет химическую активность.

В таких условиях начинается активное окисление меди: на ее поверхности формируется зеленоватая пленка, состоящая из CuCO3, Cu(OH)2 и различных сернистых соединений. Такая пленка, которая называется патиной, выполняет важную функцию защиты металла от дальнейшего разрушения.

Окисление начинает активно происходить и тогда, когда изделие подвергается нагреву.

Если металл нагреть до температуры 375 градусов, то на его поверхности формируется оксид меди, если выше (375-1100 градусов) — то двухслойная окалина.

Медь достаточно легко реагирует с элементами, которые входят в группу галогенов. Если металл поместить в пары серы, то он воспламенится.

Высокую степень родства он проявляет и к селену. Медь не вступает в реакцию с азотом, углеродом и водородом даже в условиях высоких температур.

Внимание заслуживает взаимодействие оксида меди с различными веществами. Так, при его взаимодействии с серной кислотой образуется сульфат и чистая медь, с бромоводородной и иодоводородной кислотой — бромид и иодид меди.

Иначе выглядят реакции оксида меди с щелочами, в результате которых образуется купрат.

Получение меди, при котором металл восстанавливается до свободного состояния, осуществляют при помощи оксида углерода, аммиака, метана и других материалов.

Медь при взаимодействии с раствором солей железа переходит в раствор, при этом железо восстанавливается. Такая реакция используется для того, чтобы снять напыленный медный слой с различных изделий.

Одно- и двухвалентная медь способна создавать комплексные соединения, отличающиеся высокой устойчивостью.

Такими соединениями являются двойные соли меди и аммиачные смеси.

И те и другие нашли широкое применение в различных отраслях промышленности.

Бухты медной проволоки

Области применения меди

Применение меди, как и наиболее схожего с ней по своим свойствам алюминия, хорошо известно — это производство кабельной продукции.

Медные провода и кабели, характеризуются невысоким электрическим сопротивлением и особыми магнитными свойствами.

Для производства кабельной продукции применяются виды меди, характеризующиеся высокой чистотой.

Если в ее состав добавить даже незначительное количество посторонних металлических примесей, к примеру, всего 0,02% алюминия, то электрическая проводимость исходного металла уменьшится на 8–10%.

Невысокий вес меди и ее высокая прочность, а также способность поддаваться различным видам механической обработки — это те свойства, которые позволяют производить из нее трубы, успешно использующиеся для транспортировки газа, горячей и холодной воды, пара. Совершенно не случайно именно подобные трубы применяются в составе инженерных коммуникаций жилых и административных зданий в большинстве европейских стран.

Кристаллическое строение металлов. Кристаллическая решетка металлов

Кристаллическая структура меди

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. В каждую эпоху предпочтение отдавалось разным видам этих удивительных веществ. Так, IV-III тысячелетия до нашей эры считаются веком хальколита, или медным. Позже его сменяет бронзовый, а затем в силу вступает тот, что и по сей день является актуальным — железный.

Сегодня вообще сложно представить, что когда-то можно было обходиться без металлических изделий, ведь практически все, начиная от предметов быта, медицинских инструментов и заканчивая тяжелой и легкой техникой, состоит из этого материала или включает в свой состав отдельные части из него. Почему же металлы сумели завоевать такую популярность? В чем проявляются особенности и как это заложено в их строении, попробуем разобраться далее.

Общее понятие о металлах

«Химия. 9 класс» — это учебник, по которому проходят обучение школьники. Именно в нем подробно изучаются металлы. Рассмотрению их физических и химических свойств отведена большая глава, ведь разнообразие их чрезвычайно велико.

Именно с этого возраста рекомендуют давать детям представление о данных атомах и их свойствах, ведь подростки уже вполне могут оценить значение подобных знаний. Они прекрасно видят, что окружающее их разнообразие предметов, машин и прочих вещей имеет в своей основе как раз металлическую природу.

Что же такое металл? С точки зрения химии, к данным атомам принято относить те, что имеют:

  • малое число электронов на внешнем уровне;
  • проявляют сильные восстановительные свойства;
  • имеют большой атомный радиус;
  • как простые вещества обладают рядом специфических физических свойств.

Основу знаний об этих веществах можно получить, если рассмотреть атомно-кристаллическое строение металлов. Именно оно объясняет все особенности и свойства данных соединений.

В периодической системе для металлов отводится большая часть всей таблицы, ведь они образуют все побочные подгруппы и главные с первой по третью группу. Поэтому их численное превосходство очевидно. Самыми распространенными являются:

  • кальций;
  • натрий;
  • титан;
  • железо;
  • магний;
  • алюминий;
  • калий.

Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет именно кристаллическое строение металлов.

Свойства металлов

К специфическим свойствам рассматриваемых веществ относят следующие.

  1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым серебристо-белым цветом. Лишь некоторые (золото, медь, сплавы) отличаются.
  2. Ковкость и пластичность — способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.
  3. Электропроводность и теплопроводность — одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

Атомно-кристаллическое строение металлов

В чем же заключается такое строение, чем характеризуется? Само название говорит о том, что все металлы представляют собой кристаллы в твердом состоянии, то есть при обычных условиях (кроме ртути, которая является жидкостью). А что такое кристалл?

Это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов.

Они располагаются в нем не хаотично, а очень правильно и последовательно.

Так вот, если мысленно соединить все эти частицы в одну структуру, то получится красивое изображение в виде правильного геометрического тела какой-либо формы.

Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку.

Совокупность таких ячеек, собранная вместе и отраженная в трехмерном пространстве, и образует кристаллические решетки.

Химия, физика и металловедение — это науки, которые занимаются изучением особенностей строения таких структур.

Сама элементарная ячейка — это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц.

Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом.

В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства.

Существует несколько разновидностей кристаллических решеток. Объединяет их все одна особенность — в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Типы кристаллических решеток

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

  1. Объемно-центрированная кубическая.
  2. Гексагональная плотноупакованная.
  3. Гранецентрированная кубическая.

Кристаллическое строение металлов было изучено только благодаря электронной микроскопии, когда стало возможным получать большие увеличения изображений. А классификацию типов решеток впервые привел французский ученый Браве, по фамилии которого их иногда называют.

Объемно-центрированная решетка

Строение кристаллической решетки металлов данного типа представляет собой следующую структуру. Это куб, в узлах которого находится восемь атомов. Еще один располагается в центре свободного внутреннего пространства ячейки, что и объясняет название «объемно-центрированная».

Это один из вариантов наиболее простого строения элементарной ячейки, а значит, и всей решетки в целом. Такой тип имеют следующие металлы:

  • молибден;
  • ванадий;
  • хром;
  • марганец;
  • альфа-железо;
  • бетта-железо и другие.

Основные свойства таких представителей — высокая степень ковкости и пластичности, твердость и прочность.

Гранецентрированная решетка

Кристаллическое строение металлов, имеющих гранецентрированную кубическую решетку, представляет собой следующую структуру. Это куб, который включает в свой состав четырнадцать атомов. Восемь из них формируют узлы решетки, а еще шесть расположены по одному на каждой грани.

Подобную структуру имеют:

  • алюминий;
  • никель;
  • свинец;
  • гамма-железо;
  • медь.

Основные отличительные свойства — блеск разного цвета, легкость, прочность, ковкость, повышенная устойчивость к коррозии.

Гексагональная решетка

Кристаллическое строение металлов, обладающих данным типом решетки, следующее. В основе элементарной ячейки лежит шестигранная призма. В ее узлах располагается 12 атомов, еще два по основаниям и три атома свободно лежат внутри пространства в центре структуры. Всего семнадцать атомов.

Подобную сложную конфигурацию имеют такие металлы, как:

  • альфа-титан;
  • магний;
  • альфа-кобальт;
  • цинк.

Основные свойства — высокая степень прочности, сильный серебристый блеск.

Дефекты кристаллического строения металлов

Однако все рассмотренные типы ячеек могут иметь и естественные недостатки, или так называемые дефекты. Это может быть связано с разными причинами: посторонними атомами и примесями в металлах, внешними воздействиями и прочим.

Поэтому существует классификация, отражающая дефекты, которые могут иметь кристаллические решетки. Химия как наука изучает каждый из них с целью выявления причины и способа устранения, чтобы свойства материала не были изменены. Итак, дефекты следующие.

  1. Точечные. Они бывают трех основных видов: вакансии, примеси или дислоцированные атомы. Приводят к ухудшению магнитных свойств металла, электро- и теплопроводности его.
  2. Линейные, или дислокационные. Выделяют краевые и винтовые. Ухудшают прочность и качество материала.
  3. Поверхностные дефекты. Влияют на внешний вид и структуру металлов.

В настоящее время разработаны методики устранения дефектов и получения чистых кристаллов. Однако совсем искоренить их не удается, идеальной кристаллической решетки не существует.

Значение знаний о кристаллическом строении металлов

Из вышеизложенного материала очевидно, что знания о тонкой структуре и строении позволяют спрогнозировать свойства материала и повлиять на них. И это позволяет делать наука химия.

9 класс общеобразовательной школы делает в процессе обучения упор на то, чтобы сформировать у учащихся четкое понятие о важном значении основополагающей логической цепочки: состав — строение — свойства — применение.

Сведения о кристаллическом строении металлов очень четко иллюстрирует эту зависимость и позволяет учителю наглядно объяснить и показать детям, насколько важно знать тонкую структуру, чтобы правильно и грамотно использовать все свойства.

Медь самородная формула свойства

Кристаллическая структура меди

Синонимы: Купрокупритом были названы тонкие смеси самородной меди и куприта (Вернадский, 1910). Витнеит—whitneyite (Гент, 1859) и дарвинит (Форбс, 1860) — мышьяковистая медь, образующая смеси с альгодонитом.

Группа

Происхождение названия

Латинское наименование меди cuprum происходит от названия острова Кипр, откуда в древности ввозили медь. Происхождение русского названия неясно.

Английское название минерала Медь — Copper

Медный самородок

  • Химический состав
  • Разновидности
  • Кристаллографическая характеристика
  • Форма нахождения в природе
  • Физические свойства
  • Химические свойства. Прочие свойства
  • Диагностические признаки. Спутники.
  • Происхождение минерала
  • Месторождения
  • Практическое применение
  • Физические методы исследования
  • Кристаллооптические свойства в тонких препаратах (шлифах)
  • Купить

Кристаллографическая характеристика

Сингония. Кубическая.

Класс. Гексоктаэдрический.

Кристаллическая структура

Для кристаллической структуры характерна гранецентрированная решетка; по углам и в центрах граней элементарного куба расположены атомы меди.

Это формальное выражение того, что в структуре меди имеется плотнейшая упаковка (так называемая кубическая плотнейшая упаковка) из атомов металла с радиусом 1,27 А и расстоянием между ближайшими атомами 2,54 А при выполнении пространства в 74,05%.

Каждый атом Cu окружен 12 ему подобными (координационное число 12), располагающимися вокруг него по вершинам так называемого Архимедова кубооктаэдра.

Главные формы:а (100), d (110), о (111), l (530), е (210), h (410).

Форма нахождения в природе

Облик кристаллов. Облик кристаллов кубический, тетрагексаэдрический, додекаэдрический, реже — октаэдрический (возможно, псевдоморфозы по куприту). Грани часто шероховатые, с углублениями или возвышениями. Простые кристаллы редки.

Двойники. Двойники срастания по (111) обычны, иногда полисинтетические, часто пластинчатые в направлении двойники оси или удлиненные паралелльны диагонали двойники плоскости. Обычно кристаллы (простые и двойники) неравномерно развиты: вытянуты, укорочены или деформированы.

Характерны дендритовидные формы, представляющие собой однообразные срастания множества кристаллов (единообразно деформированных или правильных) по какому-либо одному направлению.

Таковы, например, двойниковые по (111) кристаллы, вытянутые по оси симметрии 2-го порядка и сросшиеся параллельно граням ромбического додекаэдра) или срастания правильных двойниковых кристаллов, разветвляющиеся по направлению ребер и диагоналей октаэдрических граней, а также параллельные срастания кристаллов, вытянутых в направлении осей 4-го порядка. В сплошных выделениях самородной меди при травлении обнаруживаются признаки собирательной кристаллизации с развитием крупных зерен за счет более мелких зональных зерен неправильной формы.

Агрегаты. Искаженные кристаллы, в одиночных неправильных зернах, дендритовидные сростки, нитевидные, проволочные, моховидные образования, тонкие пластинки, конкреции, порошковатые скопления и сплошные массы весом до нескольких сотен тонн.

Дендриты

Оптические

Цвет в свежем изломе светло-розовый, быстро переходящий в медно-красный, затем в коричневый; часто с желтой или пестрой побежалостью.

Черта медно-красная, блестящая.

Блеск металлический.

Отлив

Прозрачность. Непрозрачна. В тончайших пластинках просвечивает зеленым цветом.

Показатели преломления

 Ng = , Nm = и Np =

Механические

Твердость 2,5-3.

Плотность 8,4—8,9

Спайность не наблюдается.

Излом занозистый, крючковатый.

Прочие свойства

Очень ковка и тягуча. Электропроводность очень высокая; существенно понижается от примесей.

Поведение при нагревании. Чистая медь плавится при 1083°. Теплопроводность несколько меньше, чем у серебра.

Искусственное получение минерала

Может быть легко получена из расплавов или путем электролиза из растворов солей меди.

Диагностические признаки

Сходные минералы

Узнается по красному цвету свежей поверхности, блестящей черте, средней твердости и ковкости, обычно покрыта зеленоватыми, черными, синими налетами окисленных минералов меди.  Под микроскопом в отраженном свете легко определяется по цвету и отражательной способности.

Сопутствующие минералы. Медистое золото, халькозин, кальцит, диопсид, апатит, сфен, магнетит, малахит, барит, кварц, халькопирит.

Происхождение и нахождение

Гидротермальное. Накапливается в россыпях. Как уникальные явления описаны самородки массой до 450 т.

Самородная медь образуется в восстановительных условиях при различных геологических процессах; значительная часть ее выделяется из гидротермальных растворов.

В виде микроскопических выделений наблюдается во многих, преимущественно основных, изверженных породах, подвергшихся воздействию гидротермальных растворов, например, в серпентинизированных перидотитах, дунитах и серпентинитах.

В этом случае возникновение самородной меди, возможно, связано с разложением ранее образовавшихся медных сульфидов, например, кубанита (Урал, Закавказье). Аналогичное происхождение можно приписать самородной меди в амфиболитизированных основных породах Серовского района Свердловской области.

В Карабашском месторождении медистого золота Челябинской области самородная медь наблюдается в жилообразных телах диопсидо-гранатовых пород, залегающих среди серпентинитов; для самородной меди здесь характерна ассоциация с медистым золотом, халькозином, кальцитом, диопсидом, апатитом, сфеном, магнетитом и др.

В некоторых древних вулканических породах (мелафирах, диабазах и др.

), метаморфизованных под воздействием паров, газов и гидротермальных растворов, медь выполняет миндалины, образует цемент между минералами измененной лавы, заполняет пустоты и трещины; сопровождается гидротермальными минералами: анальцимом, ломонтитом, пренитом, датолитом, адуляром, хлоритом, эпидотом, пумпелиитом, кварцем, кальцитом. Крупнейшие месторождения этого типа находятся на полуострове Кивино в районе Верхнего озера (штат Мичиган, США), где оруденение приурочено к верхнепротерозойской толще. масса меди добывается из мелафиров и конгломератов, но наиболее крупные выделения меди (до 400 т и более) встречены в кальцитовых жилах, содержащих самородное серебро и домейкит.

Медный самородок

Изменение минерала

Наиболее обычными продуктами изменения самородной меди являются куприт, малахит и азурит.

Месторождения

Выделения самородной меди наблюдались в диабазах Новой Земли, в траппах Сибирской платформы, среди основных эффузивных пород в Италии, на Фарерских островах (Дания), в Новой Шотландии (Канада) и в других местах.

Представителями редких типов гипогенных месторождений самородной меди являются цинково-марганцовое месторождение Франклин (штат Нью-Джерси, США) и марганцовые месторождения Лонгбан и Якобсберг (Швеция).

Гипогенными, по-видимому, являются выделения самородной меди весом до нескольких тонн из ранее разрабатывавшегося месторождения Калмактас в Казахстане, представленные в музеях прекрасными образцами.В зоне окисления, особенно в ее нижних частях, самородная медь в основном является ранним продуктом изменения сульфидных медных минералов, главным образом халькозина.

Она слагает преимущественно выделения неправильной формы, реже — кристаллы и дендритовидные агрегаты.Наиболее часто самородная медь сопровождается халькозином, купритом, кальцитом, лимонитом. Наблюдается в ряде месторождений Казахстана (Джезказган, Беркара, Успенское и др.), Рудного Алтая (Белоусовское, Зыряновское, Чудак, Таловское и др.

), США (Бисби и Клифтон- Моренси в штате Аризона, Тинтик в штате Юта и др.).Частью самородная медь в зоне окисления возникает путем отложения из растворов, содержащих сульфат меди. Такова, например, самородная медь, образующая выделения в полостях среди агрегатов лимонита, иногда в ассоциации с купритом (Меднорудянекое месторождение Свердловской обл. и др.).

Известны псевдоморфозы самородной меди, образовавшиеся в зоне окисления по халькозину, куприту, антлериту, халькантиту, азуриту, кальциту, арагониту и другим минералам.Особенно красивые образцы самородной меди (кристаллы и дендритовидные сростки) происходят из Турьинских рудников Свердловской области.

В некоторых горных выработках из медьсодержащих вод на железных предметах выделяется так называемая цементная медь в виде пленок и корочек. Известны также случаи образования меди на полусгнивших остатках крепежной древесины.

В повышенном количестве самородная медь наблюдается в некоторых осадочных породах (песчаниках, глинах, мергелях), содержащих растительные остатки, в виде выделений неправильной формы, иногда в псевдоморфозах по древесине или в виде конкреций. Таковы, например, пермские медистые песчаники отдельных районов России (Приуралье, Татарстан и др.), песчаники Науката в Киргизияи меловые медистые песчаники Корокоро и Кобрицос в Боливии и др.С восстановительными процессами связано также образование самородной меди в некоторых торфяниках, например,в Свердловской области— по реке Лёвихе в бассейне реки Тагила и в Сысертском районе.

В виде галек и зерен самородная медь встречается в России в некоторых россыпях: на Урале, по Енисею, по реке Б. Сархой в Бурятия, по реке Чорох в Грузии, на Командорских островах и в других местах.

В штате Коннектикут (США) самородная медь обнаружена в ледниковых отложениях в виде выделений весом до 75 кг.

Мелкие, неправильной формы выделения самородной меди отмечены в самородном железе метеорита Венгерово в ассоциации с троилитом.

Кристаллическое строение металлов

Кристаллическая структура меди

Металлы — один из самых распространенных веществ в материальной культуре человека.

Тысячелетиями медь, железо, серебро и золото были основным материалом для производства оружия, инструментов, ответственных частей транспорта и механизмов, деталей домашней утвари и украшений.

В XIX веке, с освоением технологии получения чугуна, металлы пришли в строительство и станкостроение. XX век был веком металлов.

Металлы

В нашу жизнь вошли алюминий, титан, бор и многие более редкие металлы. Используя их, человечество шагнуло в небо, космос и глубины океана. Металлы сделали возможным массовое производство домашней бытовой техники.

В конце XX века пластмассы и композитные вещества ощутимо потеснили металлы с лидирующих позиций.

Основные характеристики металлов — прочность, упругость и пластичность определяются их физико-химическими свойствами и атомным строением.

Основные группы металлов в промышленности

Индустрия делит металлы на большие группы:

  • Черные.
  • Цветные легкие.
  • Цветные тяжелые.
  • Благородные.
  • Редкоземельные и щелочные.

Черные металлы

В эту группу входят железо, марганец, хром и их сплавы. Группа также включает в себя стали, чугуны и ферросплавы. Эти вещества обладают хорошей электропроводностью и уникальными магнитными характеристиками.

Черные металлы

Черные металлы покрывают до 90% мировой потребности в металлоизделиях.

Легкие цветные металлы

Отличаются низкой плотностью. Группа включает в себя алюминий, титан, магний. Эти реже встречаются, чем железо, и обходятся дороже в добыче руды и в производстве. Они используются там, где малый вес изделия или детали окупает ее большую стоимость – в самолетостроении, производстве электроники, в коммуникационной индустрии.

Легкие цветные металлы

Титан не вызывает отторжения со стороны иммунной системы и применяется в протезировании костной ткани.

Тяжелые цветные металлы

Это элементы с большим удельным весом, такие, как медь, олово, свинец, цинк и никель. Обладают хорошей электропроводностью.

МедьОловоЦинкСвинец
Чистый никель

Они широко используются как катализаторы реакций, в изготовлении электроматериалов, в электронике, на транспорте – везде, где требуются достаточно прочные, упругие и коррозионностойкие материалы.

Благородные металлы

В эту группу входят золото, серебро, платина, а также редко встречающееся рутений, родий, палладий, осмий, иридий. Они обладают наибольшим удельным весом, высокой коррозионной устойчивостью и высокой электрической и тепловой проводимостью.

Золото и платинаСеребро

На заре человечества золото, серебро и платина применялись как универсальный платежный инструмент и как средство накопления богатств. С развитием цифровой экономики и переходом платежей в виртуальность важнее стаи их уникальные физические свойства

Редкоземельные и щелочные

К редкоземельным относятся скандий, иттрий, лантан и еще 15 редких элементов. Эти элементы отличаются значительным удельным весом, высокой химической активностью и применяются в высокотехнологичных отраслях.

ИттрийСканидийЛантан

К щелочным относятся литий, калий, натрий и другие. Все они отличаются малым удельным весом и исключительной химической активностью и при реакции с водой образуют щелочи, широко применяемы в быту и промышленности в составе мыла и других моющих средств.

Щелочные металлы

Классификация металлов по химическому составу

Химические свойства чистых элементов определяются строением атомов реальных металлов и прежде всего их атомным числом, характеризующим их способность реагировать с водородом, кислородом и другими элементами. Химические характеристики реально применяемых металлов могут сильно отличаться от параметров чистого вещества как в лучшую, так и в худшую сторону.

Нежелательные добавки называют примесями, а те, что вносятся преднамеренно для изменения параметров в нужную сторону — легирующими присадками.

Общепризнанной является классификация, основанная на указании главного компонента сплава.

Атомно — кристаллическое строение металлов

Внутреннее строение металлов и их характеристики определяют их физико-химические свойства. Электроны на внешних орбитах атомов слабо связаны с ядром и имеют отрицательный заряд. При наличии разницы потенциалов электроны мигрируют к положительному полюсу, создавая электрический ток. Это физическое явление обуславливает электропроводность.

Кристаллическое строение свойственно металлам и их сплавам в твердом фазовом состоянии. Атомы выстраиваются в определенную объемную структуру, называемую кристаллической решеткой.

Число атомов в вершинах и на гранях этой структуры, а также дистанция между ними определяют такие физические свойства металла, как электро- и теплопроводность, вязкость, текучесть и т.д.

Кристаллическое строение металлов и сплавов может быть двух типов:

  • Межатомная дистанция одинакова по всем направлениям. Это так называемое изотропное строение. При этом физические свойства кристалла также одинаковы по всем направлениям.
  • Межатомное расстояние по горизонтали и по вертикали разное. Такой кристалл называют анизотропным, и его физические параметры меняются в зависимости от направления.

Атомно-кристаллическое строение металлов

В реальном куске металлов, составленному из множества изолированных кристаллических фрагментов, атомно кристаллическое строение принадлежит к третьему типу — квазиизотропному. В среднем свойства такого куска близки к изотропным.

При выстраивании кристаллической решетки некоторые атомы не попадают на свое место, смещаются или теряются. В этом случае говорят о дефектах кристаллического строения металлов.

Дефекты структуры отрицательно влияют на свойства изделия, особенно если оно должно быть монокристаллом, как, например, в электронике, лазерной технике и других отраслях высоких технологий.

Физические свойства металлов

Физические свойства определяются внутренним строением металлов.

Главное отличие металлов от других элементов — это их электропроводность и магнитные свойства.

И хотя ученые создали неметаллические материалы, обладающие другим строением, но такими же свойствами, как у металлов и сплавов, они еще слишком дороги для массового применения. Многие химически чистые металлы обладают недостаточной прочностью для практических применений, чтобы исправить ситуацию, в технике и строительстве используют их сплавы.

Физические свойства металлов

Добавление тех или иных присадок приводит к росту прочность получаемого вещества в десятки раз по отношению к исходному элементу.

Электронное строение металлов и их особенности

Внутреннее строение реальных металлов определяет их физико-химические параметры.

Кристаллическая решетка металлов

Все металлы в твердом фазовом состоянии имеют кристаллическое строение. Это пространственное образование из многократно повторяющихся первичных структур называют кристаллической решеткой.
схема кристаллической решетки.

Кристаллическое строение металлов

Кристаллическое строение металлов и сплавов может быть двух типов:

  • Межатомная дистанция равна по всем направлениям. Это так называемое изотропное строение. При этом физические свойства кристалла также одинаковы по всем направлениям.
  • Межатомное расстояние по горизонтали и по вертикали разное. Такой кристалл называют анизотропным, его параметры зависят от направления.

В реальном куске металлов, который состоит из множества кристаллических фрагментов, атомно кристаллическое строение принадлежит к третьему типу — квазиизотропному. Усредненные параметры такого куска близки к изотропным.

Кристаллическое строение сплавов

Сплав это материал, состоящий из двух и более химических элементов. В его состав могут входить как металлы, так и неметаллы. Например, бронза — это сплав меди и олова, а чугун — сплав железа и углерода.

Кроме основных, в состав могут входить и другие вещества, содержащиеся в небольших количествах. Если их добавляют специально и улучшают свойства материала, их называют легирующими присадками, если ухудшают — вредными примесями.

Кристаллическое строение сплавов сложнее, чем металлов.

Строение сплавов

Оно определяется взаимовлиянием компонентов при образовании кристалла, и принадлежит к трем подвидам:

  • Твердые растворы. Один элемент растворяется в другом. Ведущий элемент строит кристаллическую структуру, а атомы второстепенного элемента размещаются в объеме этой решетки.
  • Химическое соединение. Элементы химически реагируют друг с другом, образуя новое соединение. Из его молекул и составляется кристаллическая решетка.
  • Механическая смесь. Элементы сплава не реагируют друг с другом. Каждый строит свои кристаллические структуры, срастающиеся в независимые кристаллы. Сплав будет представлять собой затвердевшую смесь из множества кристалликов двух разных типов. Такое вещество будет иметь собственную температуру перехода в жидкую фазу.

Физические свойства сплавов могут заметно меняться при изменении процентного соотношения составляющих.

Кристаллизация сплавов

Первичная кристаллизация — это затвердевание расплава с образованием кристаллических решеток. Пространственные атомные и молекулярные структуры, возникающие в ходе такого процесса, оказывают решающее влияние на свойства получаемого сплава.

Сначала в остывающем расплаве возникают центры кристаллизации, вокруг них в ходе процесса и нарастают кристаллы, многократно повторяя структуру центра. В качестве центров кристаллизации могут выступать:

  • Первые образовавшиеся кристаллы в зонах локального охлаждения, чаще всего у стенок литейной формы.
  • Частички неметаллических примесей.
  • Тугоплавкие примеси, уже находящиеся в твердой форме.

Процесс кристаллизации металлов и сплавов

Кристаллы обычно растут в направлении роста градиента температуры. Если рост решеток не встречает физических препятствий, образуются ветвящиеся кристаллические структуры, напоминающие кораллы — дендриты. Если они растут из разных центров и встречаются в расплаве, то препятствуют росту друг друга и искажают свою форму.

Такие искаженные кристаллы – это кристаллиты, или зерна. Совокупность отдельных зерен срастается в поликристаллическое тело.
Отдельные кристаллиты достигают размеров от одного до 10 000 микрон и по-разному развернуты в пространстве. На стыках отдельных кристаллитов образуется граничный слой, в котором кристаллические решетки разорваны.

Такие слои обладают измененными химическими и физическими свойствами.

Решетки кристаллитов могут обладать разными дефектами структуры:

  • точечные;
  • линейные;
  • поверхностные;

Дефекты кристаллического строения металлов

Дефекты определяются отсутствием атома или группы атомов в вершинах или гранях кристаллической решетки, смещением этих атомов со своих мест или замещением атома или их группы атомами или молекулами примесей.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.