Предельные прогибы металлических балок
Расчет балки на прогиб — деревянной и металлической, формулы
В инженерных и инженерно-строительных науках (сопротивление материалов, строительная механика, теория прочности), под балкой понимается элемент несущей конструкции, воспринимающаяся преимущественно на изгибные нагрузки, и имеющая различные формы поперечного сечения.
Конечно, в реальном строительстве, балочные конструкции подвержены и другим видам нагружения (ветровой нагрузке, вибрации, знакопеременному нагружения), однако основной расчет горизонтальных, многоопертых и жесткозакрепленных балок проводится на действие или поперечной, или приведенной к ней эквивалентной нагрузке.
Расчетная схема рассматривает балку как жесткозакрепленный стержень или как стержень, установленный на двух опорах. При наличии 3 и более опор, стержневая система считается статически неопределимой и расчет на прогиб как всей конструкции, так и ее отдельных элементов, значительно усложняется.
При этом, основное нагружение рассматривается как сумма сил, действующая в направлении перпендикулярному сечению. Целью расчета на прогиб является определение максимального прогиба (деформации) который не должен превышать предельных значений и характеризует жесткость как отдельного элемента (так и всей связанной с ней строительной конструкции.
Основные положения расчетных методик
Современные строительные методики расчета стержневых (балочных) конструкций на прочность и жесткость, дают возможность уже на стадии проектирования определить значение прогиба и сделать заключение о возможности эксплуатации строительной конструкции.
Расчет на жесткость позволяет решить вопрос о наибольших деформациях, которые могут возникнуть в строительной конструкции при комплексном действии различного вида нагрузок.
Современные методы расчета, проводимые с использованием специализированных расчетов на электронно-вычислительных машинах, или выполняемые при помощи калькулятора, позволяют определить жесткость и прочность объекта исследований.
Несмотря на формализацию расчетных методик, которые предусматривают использование эмпирических формул, а действие реальных нагрузок учитывается введением поправочных коэффициентов (коэффициенты запаса прочности), комплексный расчет достаточно полно и адекватно оценивает эксплуатационную надежность возведенного сооружения или изготовленного элемента какой-либо машины.
Несмотря на отдельность прочности расчетов и определения жесткости конструкции, обе методики взаимосвязаны, а понятия «жесткость» и «прочность» неразделимы.Однако, в деталях машин, основное разрушение объекта происходит из-за потери прочности, в то время как объекты строительной механики часто непригодны к дальнейшей эксплуатации из значительных пластических деформаций, которые свидетельствуют о низкой жесткости элементов конструкции или объекта в целом.
Сегодня, в дисциплинах «Сопротивление материалов», «Строительная механика» и «Детали машин», приняты два метода расчета на прочность и жесткость:
- Упрощенный (формальный), при проведении которого в расчетах применяются укрупненные коэффициенты.
- Уточненный, где используются не только коэффициенты запаса прочности, но и производится расчет контракции по предельным состояниям.
Алгоритм расчета на жесткость
Формула определения прочности балки на изгиб
Где:
- M – максимальный момент, возникающий в балке (находится по эпюре моментов);
- Wn,min – момент сопротивления сечения (находится по таблице или вычисляется для данного профиля), у сечения обычно 2-а момента сопротивления сечения, в расчетах используется Wx, если нагрузка перпендикулярна оси х-х профиля или Wy, если нагрузка перпендикулярна оси y-y;
- Ry – расчетное сопротивление стали при изгибе (задается в соответствии с выбором стали);
- γc – коэффициент условий работы (данный коэффициент можно найти в таблице 1 СП 16.13330.2011;
Алгоритм расчета на жесткость (определение величины прогиба) достаточно формализован и не представляет труда для овладения.
Для того, чтобы определить прогиб балки, необходимо в нижеприведенной последовательности выполнить следующие действия:
- Составить расчетную схему объекта исследований.
- Определить размерные характеристики балки и расчетных сечений.
- Рассчитать максимальную нагрузку, действующую на балку, определив точку ее приложения.
- При необходимости, балка (в расчетной схеме она заменятся невесомым стержнем) дополнительно проверяется на прочность по максимальному изгибающему моменту.
- Определяется значение максимального прогиба, который характеризует жесткость балки.
Для составления расчетной схемы балки, необходимо знать:
- Геометрические размеры балки, включая пролет между опорами, а при наличии консолей – их длину.
- Геометрическую форму и размеры поперечного сечения.
- Характер нагрузки и точки их приложения.
- Материал балки и его физико-механические характеристики.
При простейшем расчете двухопорных балок, одна опора считается жесткой, а вторая закреплена шарнирно.
Определение моментов инерции и сопротивления сечения
К геометрическим характеристикам, которые необходимы при выполнении расчетов на прочность и жесткость, относится момент инерции сечения (J) и момент сопротивления (W). Для вычисления их величины существуют специальные расчётные формулы.
Формула момента сопротивления сечения
При определении моментов инерции и сопротивления, необходимо обращать внимание на ориентацию сечения в плоскости разреза. С увеличением момента инерции жесткость балки увеличивается, а прогиб уменьшается. Это легко проверить на практике, пытаясь согнуть доску в обычном, «лежачем» положении и поставив ее на ребро.
Определение максимальной нагрузки и прогиба
Формула определения прогиба
Где:
- q – равномерно-распределенная нагрузка, выраженная в кг/м (Н/м);
- l – длина балки в метрах;
- E – модуль упругости (для стали равен 200-210 ГПа);
- I – момент инерции сечения.
При определении максимальной нагрузки, необходимо учитывать довольно значительное число факторов, действующих как постоянно (статические нагрузки), так и периодически (ветровая, вибрационная ударная нагрузка).
В одноэтажном доме, на деревянный брус потолочного перекрытия будут действовать постоянные весовые усилия от собственного веса, расположенных на втором этаже простенков, мебели, находящихся обитателей и так далее.
Особенности расчета на прогиб
Конечно, расчет элементов перекрытий на прогиб проводится для всех случаев и обязателен при наличии значительного уровня внешних нагрузок.
Сегодня, все вычисления величины прогиба достаточно формализованы и все сложные реальные нагружения сведены к следующим простым расчетным схемам:
- Стержень, опирающийся на неподвижную и шарнирно закрепленную опоры, воспринимающий сосредоточенную нагрузку (случай рассмотрен выше).
- Стержень, опирающийся на неподвижную и шарнирно закрепленную на который действует распределенное нагружение.
- Различные варианты нагружения жестко закрепощённого консольного стержня.
- Действие на расчетный объект сложной нагрузки – распределенной, сосредоточенной, изгибающего момента.
При этом, методика и алгоритм расчета не зависят от материала изготовления, прочностные характеристики которого учтены различными значениями модуля упругости.
Наиболее распространенной ошибкой обычно является недоучет единиц измерения. К примеру, силовые факторы в расчетные формулы подставляются в килограммах, а величина модуля упругости принимается по системе «СИ», где нет понятия «килограмм силы», а все усилия измеряются в ньютонах или килоньютонах.
Разновидности балок, применяемых в строительстве
Современная стройиндустрия при возведении сооружений промышленного и жилого назначения, практикует использование стержневых систем различного сечения, формы и длины, изготовленных из различных материалов.
Наиболее большее распространение получили стальные и деревянные изделия. В зависимости от используемого материала, определение значения прогиба имеет свои нюансы, связанные со структурой и однородностью материала.
Деревянные
Современное малоэтажное строительство индивидуальных домов и загородных коттеджей практикует широкое использование лаг, изготовленных из хвойных и твердых пород древесины.
В основном, деревянные изделия, работающие на изгиб, применяются для обустройства напольных и потолочных перекрытий. Именно эти элементы конструкции испытают наибольшее действие поперечных нагрузок, взывающих наибольший прогиб.
Стрела прогиба деревянной лаги зависит:
- От материала (породы древесины), который использовался при изготовлении балки.
- От геометрических характеристик и формы попечённого сечения расчетного объекта.
- От совокупного действия различного вида нагрузок.
Критерий допустимости прогиба балки учитывает два фактора:
- Соответствие реального прогиба предельно допустимым значениям.
- Возможность эксплуатации конструкции при наличии расчетного прогиба.
Стальные
Имеют более сложное сечение, которое может быть составным, выполненным из нескольких видов металлического проката. При расчете металлоконструкций, помимо определения жесткости самого объекта его элементов, часто появляется необходимость определения прочностных характеристик соединений.
Обычно, соединение отдельных элементов стальной металлоконструкции проводится:
Как рассчитать деревянную балку
В частном домостроении есть 3 вида конструкций, которые необходимо подбирать по расчету. Это фундамент, перекрытие и крыша. Конечно, вы можете сделать это и без расчета, опираясь на свой опыт или из опыт своих друзей и знакомых.
Но тогда вы рискуете своей безопасностью или своим «кошельком». Другими словами, конструкции могут не выдержать тех нагрузок, которые на них приходятся, или они возводятся с большой надежностью, чем требуется, и на это идут лишние деньги.
Ниже мы рассмотрим, как можно рассчитать деревянную балку, т.е. подобрать ее оптимальное сечение в зависимости от условий эксплуатации и характеристики материала.
Расчет балок должен происходить в следующей последовательности:
1. Сбор нагрузок на балку.
Сбор нагрузок — это та процедура, без которой не обходится ни один расчет. Процедура эта довольно длинная, поэтому она вынесена в отдельную статью, где приведен пример сбора нагрузок на перекрытие и балку.
Для тех же, кому нужно рассчитать балку междуэтажного или чердачного перекрытия и кто не хочет заниматься сбором нагрузок, существует универсальный метод. Он заключается в том, что для междуэтажного перекрытия можно принять расчетную нагрузку равную 400 кг/м2, а для чердачного — 200 кг/м2.
Но иногда эти нагрузки могут быть сильно завышены. Например, когда строится небольшой дачный домик, на втором этаже которого будут располагаться две кровати и шкаф, нагрузку можно взять и 150 кг/м2. Только это исключительно на Ваше усмотрение.
2. Выбор расчетной схемы.
Расчетная схема подбирается в зависимости от способа опирания (жесткая заделка, шарнирное опирание), вида нагрузок (сосредоточенные или распространенные) и количества пролетов.
3. Определение требуемого момента сопротивления.
Это так называемый расчет по первой группе предельных состояний — по несущей способности (прочности и устойчивости). Здесь определяется минимальное допустимое сечение деревянной балки, при котором эксплуатация конструкций будет происходить без риска наступления их полной непригодности к эксплуатации.
Примечание: в расчете используются расчетные нагрузки.
4. Определение максимально допустимого прогиба балки.
Это расчет по второй группе предельных состояний — по деформациям (прогибу и перемещениям). По данному расчету определяется сечение деревянной балки в зависимости о предельного прогиба, при превышении которого будет нарушена нормальная их эксплуатация.
Примечание: в расчет используются нормативные нагрузки.
Теперь конкретнее. Для того, чтобы рассчитать деревянную балку перекрытия, Вы можете воспользоваться специальным калькулятором или примером ниже.
Пример расчета деревянной балки перекрытия.
Расчет выполняется в соответствии со СНиП II-25-80 ( СП 64.13330.2011) «Деревянные конструкции» [1] и применением таблиц [2].
Исходные данные
Требуется рассчитать балку междуэтажного перекрытия над первым этажом в частном доме.
Материал — дуб 2 сорта.
Срок службы конструкций — от 50 до 100 лет.
Состав балки — цельная порода (не клееная).
Шаг балок — 800 мм;
Длина пролета — 5 м (5 000 мм);
Пропитка антипиренами под давлением — не предусмотрена.
Расчетная нагрузка на перекрытие — 400 кг/м2; на балку — qр = 400·0,8 = 320 кг/м.
Нормативная нагрузка на перекрытие — 400/1,1 = 364 кг/м2; на балку — qн = 364·0,8 = 292 кг/м.
Расчет
1) Подбор расчетной схемы.
Так как балка опирается на две стены, т.е. она шарнирно оперта и нагружена равномерно-распределенной нагрузкой, то расчетная схема будет выглядеть следующим образом:
2) Расчет по прочности.
Определяем максимальный изгибающий момент для данной расчетной схемы:
Мmax = qp·L2/8 = 320·52/8 = 1000 кг·м = 100000 кг·см,
где: qp — расчетная нагрузка на балку;
L — длина пролета.
Определяем требуемый момент сопротивления деревянной балки:
Wтреб = γн/о·Mmax/R = 1,05·100000/121,68 = 862,92 см3,
где: R = Rи·mп·mд·mв·mт·γсc = 130·1,3·0,8·1·1·0,9 = 121,68 кг/см2 — расчетное сопротивление древесины, подбираемое в зависимости от расчетных значений для сосны, ели и лиственницы при влажности 12% согласно СНиП [1] — таблицы 1 [2] и поправочных коэффициентов:
mп = 1,3 — коэффициент перехода для других пород древесины, в данном случае принятый для дуба (таблица 7 [2]).
mд = 0,8 — поправочный коэффициент принимаемый в соответствии с п.5.2. [1], вводится в случае, когда постоянные и временный длительные нагрузки превышают 80% суммарного напряжения от всех нагрузок.mв = 1 — коэффициент условий работы (таблица 2 [2]).
mт = 1 — температурный коэффициент, принят 1 при условии, что температура помещения не превышает +35 °С.
γсс = 0,9 — коэффициент срока службы древесины, подбирается в зависимости от того, сколько времени вы собираетесь эксплуатировать конструкции (таблица 8 [2]).
γн/о = 1,05 — коэффициент класса ответственности. Принимается по таблице 6 [2] с учетом, что класс ответственности здания I.
В случае глубокой пропитки древесины антипиренами к этим коэффициентам добавился бы еще один: ma = 0.9.
С остальными менее важными коэффициентами вы можете ознакомится в п.5.2 СП 64.13330.2011.
Примечание: перечисленные таблицы вы можете найти здесь.
Определение минимально допустимого сечения балки:
Так как чаще всего деревянные балки перекрытия имеют ширину 5 см, то мы будем находить минимально допустимую высоту балки по следующей формуле:
h = √(6Wтреб/b) = √(6·862,92/5) = 32,2 см.
Формула подобрана из условия Wбалки = b·h2/6. Получившийся результат нас не удовлетворяет, так как перекрытие толщиной более 32 см никуда не годится. Поэтому увеличиваем ширину балки до 10 см.
h = √(6Wтреб/b) = √(6·862,92/10) = 22,8 см.
Принятое сечение балки: bxh = 10×25 см.
3) Расчет по прогибу.
Здесь мы находим прогиб балки и сравниваем его с максимально допустимым.
Определяем прогиб принятой балки по формуле соответствующей принятой расчетной схеме:f = (5·qн·L4)/(384·E·J) = (5·2,92·5004)/(384·100000·13020,83) = 1,83 см
где: qн = 2,92 кг/cм — нормативная нагрузка на балку;
L = 5 м- длина пролета;
Е = 100000 кг/см2 — модуль упругости. Принимается равным в соответствии с п.5.3 СП 64.13330.2011 вдоль волокон 100000 кг/см2 и 4000 кг/см2 поперек волокон не взирая на породы при расчете по второй группе предельных состояний.
Но справедливости ради нужно отметить, что модуль упругости в зависимости от влажности, наличия пропиток и длительности нагрузок только у сосны может колебаться от 60000 до 110000 кг/см2.
Поэтому, если вы хотите перестраховаться, то можете взять минимальный модуль упругости.
J = b·h3/12 = 10·253/12 = 13020,83 см4 — момент инерции для доски прямоугольного сечения.
Определяем максимальный прогиб балки:
fmax = L·1/250 = 500/250 = 2,0 см.
Предельный прогиб определяется по таблице 9 [2], как для междуэтажных перекрытий.
Сравниваем прогибы:
fбалки = 1,83 см < fmax = 2,0 см - условие выполняется, поэтому увеличения сечения не требуется.
Вывод: балка сечением bxh = 10×25 см полностью удовлетворяет условиям по прочности и прогибу.
статьей с друзьями:
Проверка прогибов стальной балки
При расчете стальных балок по II-й ГПС (по прогибам) необходимо создавать раскрепления для прогибов:
Информация из справки LIRA SAPR (СправкаПояснения СтальПроверки прогибов):
Проверка прогиба осуществляется сопоставлением реально определенного относительного прогиба (L/f) с максимально возможным для данного конструктивного элемента прогибом.
В данной версии проверка выполняется только для балок на основании состава загружений во всех сочетаниях. Учитываются коэффициенты надежности по нагрузке (заданные при формировании РСУ в среде ПК ЛИРА-САПР) и коэффициенты сочетания.
Перемещения, вызванные загружениями с долей длительности 0, в данном расчете не используются.
Прогибы находятся для каждого сечения на основании распределения MY1, MZ1, QY1, QZ1 по длине элемента. Соответственно, увеличение количества расчетных сечений способствует более точному определению прогибов (особенно, если воздействуют сосредоточенные силовые факторы).В режиме локального расчета элемента (см. справочную систему СТК-САПР) имеется возможность расчета прогибов по огибающим эпюрам изгибающего момента в запас. Это может потребоваться, когда редактируются расчетные сочетания усилий (или нагрузок) и теряется связь с результатами расчета на ПК ЛИРА-САПР основной схемы.
Важно: Предусмотрена возможность определять не чистые перемещения (относительно локальных осей Y и Z в недеформированной схеме), а прогиб относительно двух выбранных условно неподвижных точек – точек раскрепления (в случае консоли, например, относительно одной точки).
Схема к определению прогибов балки с раскреплениями и без раскреплений
На приведенном фрагменте показан механизм определения прогибов (они обозначены как di и dk) в конструктивном элементе с наложенными раскреплениями на элементы.
Если раскрепления не наложены, то прогиб принимается равным полному расстоянию до оси X.
Важно: Если балка (ригель) разбита по длине промежуточными узлами, то для нее необходимо создать конструктивный элемент и раскрепления для проверки прогибов создавать как для конструктивного элемента (т.е. для балки как единого целого).
В расчете стальных конструкций коэффициент расчетной длины (и для балок, и для колонн, и для ферм) применяется к длине конечного элемента (КЭ), если не задан конструктивный элемент (КоЭ).
Если задан КоЭ, то коэффициент расчетной длины применяется к полной длине КоЭ.
Расчётная модель рамы с цельным ригелем и разбитым на отдельные элементы
Согласно нормативной документации прогиб определяется от действия нормативных нагрузок. Поскольку в LIRA SAPR все нагрузки прикладываются к узлам и элементам их расчётными значениями, при определении прогибов программа определяет нормативное значение нагрузок путём деления их на коэффициент надёжности.
Посмотреть какие приняты коэффициенты надёжности, а также ввести их вручную, если это необходимо, можно в окне параметров расчёта.Окно параметров расчёта, вызываемое из окна задания параметров для стальных конструкций
Подробнее о корректировке коэффициентов надёжности для расчета прогибов вручную читайте в статье «Коэффициенты к временным нагрузкам при проверке прогиба»
Мозаика результатов проверки назначенных сечений по 2 предельному состоянию
Предельно допустимый L/200=6000/200=30мм
Без задания раскреплений (по абсолютному перемещению узлов балки):
((39,8мм/ к-т надежности по нагрузке)/ 30мм))*100%=((39,8/1,1)/30)*100%=120,6%
С заданием раскреплений (по относительному перемещению узлов балки за вычетом перемещений опорных узлов):
((39,8мм-9,14)/ к-т надежности по нагрузке)/30мм))*100%=(((39,8-9,14)/1,1)/30)*100%=92,9%
Ручной ввод расчётной длины балки для расчёта прогибов
В диалоговом окне задания характеристик расчёта стальной балки присутствует группа параметров Расчёт по прогибу.
Информация из справки ЛИРА САПР:
Расчет по прогибу – данные для расчета прогиба. Длина пролета авто – вычисляется по положению раскреплений. Длина пролета точно – длина пролета при расчете приравнивается этому числу.
Рассмотрим раму из предыдущего примера, только теперь раскрепления для прогибов назначим для всех конструкций, а расчётные длины будем для первого случая задавать автоматическим способом, а для второго ручным.
Расчётная модель с информацией о назначенных расчётных длинах балок
Результаты расчётов прогибов балок
Предельно допустимый прогиб при длине 6 м L/200=6000/200=30мм
Предельно допустимый прогиб при длине 4 м L/200=4000/200=20мм
Проценты использования по предельному прогибу
Длина балки 6 м:
((39,8мм-9,14)/ к-т надежности по нагрузке)/30мм))*100%=(((39,8-9,14)/1,1)/30)*100%=92,9%
Длина балки 4 м:
((39,8мм-9,14)/ к-т надежности по нагрузке)/30мм))*100%=(((39,8-9,14)/1,1)/20)*100%=139,4%
Расчёт прогибов стрельчатой арки
Пример — рама переменного сечения (РПС) пролётом 18 м. Соединение полурам в коньке — шарнирное, опирание полурам на фундамент — шарнирное.
Расчётная модель рамы
При этом в параметрах «Дополнительные характеристики» необходимо указать вручную пролет, с которым программа будет сравнивать прогиб (автоматическое определение пролета возможно только для линейных балок, где все конечные элементы (КЭ) конструктивного элемента (КоЭ) лежат на одной оси):
Эпюра перемещений fz ригеля одной полурамы (вдоль местной оси Z1 стержня)
Мозаика перемещений узлов по Z и «Раскрепления для прогибов» (раскреплён только ригель №4)
Результаты определения прогибов в СТК-САПР:
Результаты определения прогибов ригелей №2 и №4
Предельно допустимый L/200=17664/200=88.32 мм
Без задания раскреплений (по абсолютному значению на эпюре прогибов fz):96.7/17644=1/182 — совпадает с результатом расчёта элемента №2
С заданием раскреплений (по относительному значению на эпюре прогибов fz):
(96.7-(-6.46))/17644=1/171 — совпадает с результатом расчёта элемента №4
Без задания раскреплений (по абсолютному значению перемещений узлов):
99.8/17644=1/177 — не совпадает ни с чем
Вывод: Расчёт на прогибы выполняется в местной системе координат стержня. Прогиб стрельчатых и цилиндрических арок, а также любых криволинейных конструкций, нужно определять по перемещениям узлов в глобальной системе координат и вручную сравнивать с предельно допустимыми значениями.
Пример – цилиндрическая арка пролётом 18 м, стрелой подъёма f = 9 м. Соединение всех элементов между собой — жёсткое, опирание на фундамент — шарнирное.
Нагрузки на арку приложены их расчётными значениями. Значения нагрузок для определения прогибов принимаются согласно СП 20.13330.2016 Нагрузки и воздействия, таблица Д.1 Приложения Д.
В данном примере арка является конструкцией покрытия, прогиб которой должен определяться от постоянных и длительных нагрузок (п.2 табл. Д.1). Для визуализации перемещений от нормативных значений нагрузок, необходимо создать особое РСН с нормативными длительными значениями нагрузок.
Нагрузки в данном РСН нужно поделить на коэффициент надёжности, с учётом длительности. На конструкцию действуют два загружения:
Загружение 1 — постоянное, коэффициент надёжности 1.1;Загружение 2 — кратковременное, коэффициент надёжности 1.2, доля длительности 0.35;
Вычислим коэффициенты для перехода к нормативным значениям
Загружение 1 Kn=1/1.1=0.91;
Загружение 2 Kn=1/1.2*0.35=0.292
Таблица РСН с сочетаниями расчётных и нормативных значений нагрузок с учётом длительности.
Мозаика перемещений узлов цилиндрической арки от РСН2
Предельно допустимый прогиб L/200=18000/200=90 мм
Фактический прогиб (по абсолютному значению перемещений узлов): 32.2/18000=1/559 – меньше предельно допустимого значения.
Примечание: если подобная конструкция стоит на своих опорах, то перемещения опорных точек (для получения относительных перемещений) удобно получить через «Мозаику относительных перемещений», указав реперный узел.
Мозаика перемещений узлов в глобальной СК (абсолютных)
Мозаика перемещений узлов в глобальной СК относительно реперного узла
Формулы для расчета прогиба балки
Балка является основным элементом несущей конструкции сооружения. При строительстве важно провести расчет прогиба балки. В реальном строительстве на данный элемент действует сила ветра, нагружение и вибрации. Однако при выполнении расчетов принято принимать во внимание только поперечную нагрузку или проведенную нагрузку, которая эквивалентна поперечной.
При расчете балка воспринимается как жесткозакрепленный стержень, который устанавливается на двух опорах. Если она устанавливается на трех и более опорах, расчет ее прогиба является более сложным, и провести его самостоятельно практически невозможно.
Основное нагружение рассчитывается как сумма сил, которые действуют в направлении перпендикулярного сечения конструкции. Расчетная схема требуется для определения максимальной деформации, которая не должна быть выше предельных значений.
Это позволит определить оптимальный материал необходимого размера, сечения, гибкости и других показателей.
Виды балок
Для строительства различных сооружений применяются балки из прочных и долговечных материалов. Такие конструкции могут отличаться по длине, форме и сечению.
Чаще всего используются деревянные и металлические конструкции. Для расчетной схемы прогиба большое значение имеет материал элемента.
Особенность расчета прогиба балки в данном случае будет зависеть от однородности и структуры ее материала.
Прочность и жесткость балки
Чтобы обеспечить прочность, долговечность и безопасность конструкции, необходимо выполнять вычисление величины прогиба балок еще на этапе проектирования сооружения. Поэтому крайне важно знать максимальный прогиб балки, формула которого поможет составить заключение о вероятности применения определенной строительной конструкции.
Использование расчетной схемы жесткости позволяет определить максимальные изменения геометрия детали. Расчет конструкции по опытным формулам не всегда эффективен.
Рекомендуется использовать дополнительные коэффициенты, позволяющие добавить необходимый запас прочности.
Не оставлять дополнительный запас прочности – одна из основных ошибок строительства, которая приводит к невозможности эксплуатации здания или даже тяжелым последствиям.
Существует два основных метода расчета прочности и жесткости:
- Простой. При использовании данного метода применяется увеличительный коэффициент.
- Точный. Данный метод включает в себя использование не только коэффициентов для запаса прочности, но и дополнительные вычисления пограничного состояния.
Последний метод является наиболее точным и достоверным, ведь именно он помогает определить, какую именно нагрузку сможет выдержать балка.
Расчет на жесткость
Для расчета прочности балки на изгиб применяется формула:
Где:
M – максимальный момент, который возникает в балке;
Wn,min – момент сопротивления сечения, который является табличной величиной или определяется отдельно для каждого вида профиля.
Ry является расчетным сопротивлением стали при изгибе. Зависит от вида стали.
γc представляет собой коэффициент условий работы, который является табличной величиной.
Расчет жесткости или величины прогиба балки является достаточно простым, поэтому расчеты может выполнить даже неопытный строитель. Однако для точного определения максимального прогиба необходимо выполнить следующие действия:
- Составление расчетной схемы объекта.
- Расчет размеров балки и ее сечения.
- Вычисление максимальной нагрузки, которая воздействует на балку.
- Определение точки приложения максимальной нагрузки.
- Дополнительно балка может быть проверена на прочность по максимальному изгибающему моменту.
- Вычисление значения жесткости или максимально прогиба балки.
Чтобы составить расчетную схему, потребуются такие данные:
- размеры балки, длину консолей и пролет между ними;
- размер и форму поперечного сечения;
- особенности нагрузки на конструкцию и точно ее приложения;
- материал и его свойства.
Если производится расчет двухопорной балки, то одна опора считается жесткой, а вторая – шарнирной.
Расчет моментов инерции и сопротивления сечения
Для выполнения расчетов жесткости потребуется значение момент инерции сечения (J) и момента сопротивления (W). Для расчета момента сопротивления сечения лучше всего воспользоваться формулой:
Важной характеристикой при определении момента инерции и сопротивления сечения является ориентация сечения в плоскости разреза. При увеличении момента инерции увеличивается и показатель жесткости.
Пример подсчета прогиба
Чтобы понять процесс расчета жесткости балки и ее максимального прогиба, можно использовать простой пример проведения расчетов. Данный расчет проводится для балки с такими характеристиками:
- материал изготовления – древесина;
- плотность составляет 600 кг/м3;
- длина составляет 4 м;
- сечение материала составляет 150*200 мм;
- масса перекрывающих элементов составляет 60 кг/м²;
- максимальная нагрузка конструкции составляет 249 кг/м;
- упругость материала составляет 100 000 кгс/ м²;
- J равно 10 кг*м².
Для вычисления максимальной допустимой нагрузки учитывается вес балки, перекрытий и опор. Рекомендуется также учесть вес мебели, приборов, отделки, людей и других тяжелых вещей, который также будут оказывать воздействие на конструкцию. Для расчета потребуются такие данные:
- вес одного метра балки;
- вес м2 перекрытия;
- расстояние, которое оставляется между балками;
- временная нагрузка;
- нагрузка от перегородок на перекрытие.
Чтобы упросить расчет данного примера, можно принять массу перекрытия за 60 кг/м², нагрузку на каждое перекрытие за 250 кг/м², нагрузки на перегородки 75 кг/м², а вес метра балки равным 18 кг. При расстоянии между балками в 60 см, коэффициент k будет равен 0,6.
Если подставить все эти значения в формулу, то получится:
q = ( 60 + 250 + 75 ) * 0,6 + 18 = 249 кг/м.
Для расчета изгибающего момента следует воспользоваться формулой f = (5 / 384) * [(qn * L4) / (E * J)] £ [¦].
Подставив в нее данные, получается f = (5 / 384) * [(qn * L4) / (E * J)] = (5 / 384) * [(249 * 44) / (100 000 * 10)] = 0,13020833 * [(249 * 256) / (100 000 * 10)] = 0,13020833 * (6 3744 / 10 000 000) = 0,13020833 * 0,0000063744 = 0,00083 м = 0,83 см.
Именно это и является показателем прогиба при воздействии на балку максимальной нагрузки. Данные расчеты показывают, что при действии на нее максимальной нагрузки, она прогнется на 0,83 см. Если данный показатель меньше 1, то ее использование при указанных нагрузках допускается.Использование таких вычислений является универсальным способом вычисления жесткости конструкции и величины их прогибания. Самостоятельно вычислить данные величины достаточно легко. Достаточно знать необходимые формулы, а также высчитать величины. Некоторые данные необходимо взять в таблице.
При проведении вычислений крайне важно уделять внимание единицам измерения. Если в формуле величина стоит в метрах, то ее нужно перевести в такой вид. Такие простые ошибки могут сделать расчеты бесполезными. Для вычисления жесткости и максимального прогиба балки достаточно знать основные характеристики и размеры материала.
Эти данные следует подставить в несколько простых формул.
Предельный прогиб металлической балки
Балка – элемент в инженерии, представляющий собой стержень, который нагружают силы, действующие в направлении, перпендикулярном стержню. Деятельность инженеров зачастую включает в себя необходимость расчета прогиба балки под нагрузкой. Этой действие выполняется для того, чтобы ограничить максимальный прогиб балки.
Типы
На сегодняшний день в строительстве могут использоваться балки, изготовленные из разных материалов. Это может быть металл или дерево. Каждый конкретный случай подразумевает под собой разные балки. При этом расчет балок на прогиб может иметь некоторые отличия, которые возникают по принципу разницы в строении и используемых материалов.
Деревянные балки
Сегодняшнее индивидуальное строительство подразумевает под собой широкое применение балок, изготовленных из дерева. Практически каждое строение содержит в себе деревянные перекрытия. Балки из дерева могут использоваться как несущие элементы, их применяют при изготовлении полов, а также в качестве опор для перекрытий между этажами.
Ни для кого не секрет, что деревянная, так же как и стальная балка, имеет свойство прогибаться под воздействием нагрузочных сил. Стрелка прогиба зависит от того, какой материал используется, геометрических характеристик конструкции, в которой используется балка, и характера нагрузок.
Допустимый прогиб балки формируется из двух факторов:
- Соответствие прогиба и допустимых значений.
- Возможность эксплуатации здания с учетом прогиба.
Проводимые при строительстве расчеты на прочность и жесткость позволяют максимально эффективно оценить то, какие нагрузки сможет выдерживать здание в ходе эксплуатации.
Также эти расчеты позволяют узнать, какой именно будет деформация элементов конструкции в каждом конкретном случае.
Пожалуй, никто не будет спорить с тем, что подробные и максимально точные расчеты – это часть обязанностей инженеров-строителей, однако с использованием нескольких формул и навыка математических вычислений можно рассчитать все необходимые величины самостоятельно.
Для того чтобы произвести правильный расчет прогиба балки, нужно также брать во внимание тот факт, что в строительстве понятия жесткости и прочности являются неразрывными. Опираясь на данные расчета прочности, можно приступать к дальнейшим расчетам относительно жесткости. Стоит отметить, что расчет прогиба балки – один из незаменимых элементов расчета жесткости.
Обратите ваше внимание на то, что для проведения таких вычислений самостоятельно лучше всего использовать укрупненные расчеты, прибегая при этом к достаточно простым схемам. При этом также рекомендуется делать небольшой запас в большую сторону. Особенно если расчет касается несущих элементов.
Расчет балок на прогиб. Алгоритм работы
На самом деле алгоритм, по которому делается подобный расчет, достаточно прост. В качестве примера рассмотрим несколько упрощенную схему проведения расчета, при этом опустив некоторые специфические термины и формулы. Для того чтобы произвести расчет балок на прогиб, необходимо выполнить ряд действий в определенном порядке. Алгоритм проведения расчетов следующий:
- Составляется расчетная схема.
- Определяются геометрические характеристики балки.
- Вычисляется максимальную нагрузку на данный элемент.
- В случае возникновения необходимости проверяется прочность бруса по изгибающему моменту.
- Производится вычисление максимального прогиба.
Как видите, все действия достаточно просты и вполне выполнимы.
Составление расчетной схемы балки
Для того чтобы составить расчетную схему, не требуется больших знаний. Для этого достаточно знать размер и форму поперечного сечения элемента, пролет между опорами и способ опирания. Пролетом является расстояние между двумя опорами. К примеру, вы используете балки как опорные брусья перекрытия для несущих стен дома, между которыми 4 м, то величина пролета будет равна 4 м.
Вычисляя прогиб деревянной балки, их считают свободно опертыми элементами конструкции. В случае балки перекрытия для расчета принимается схема с нагрузкой, которая распределена равномерно.
Обозначается она символом q. Если же нагрузка несет сосредоточенный характер, то берется схема с сосредоточенной нагрузкой, обозначаемой F.Величина этой нагрузки равна весу, который будет оказывать давление на конструкцию.
Момент инерции
Геометрическая характеристика, которая получила название момент инерции, важна при проведении расчетов на прогиб балки. Формула позволяет вычислить эту величину, мы приведем ее немного ниже.
При вычислении момента инерции нужно обращать внимание на то, что размер этой характеристики зависит от того, какова ориентация элемента в пространстве. При этом наблюдается обратно пропорциональная зависимость между моментом инерции и величиной прогиба.
Чем меньше значение момента инерции, тем больше будет значение прогиба и наоборот. Эту зависимость достаточно легко отследить на практике.
Каждый человек знает, что доска, положенная на ребро, прогибается гораздо меньше, чем аналогичная доска, находящаяся в нормальном положении.
Подсчет момента инерции для балки с прямоугольным сечением производится по формуле:
J=b*h3/12, где:
b – ширина сечения;
h – высота сечения балки.
Вычисления максимального уровня нагрузки
Определение максимальной нагрузки на элемент конструкции производится с учетом целого ряда факторов и показателей.
Обычно при вычислении уровня нагрузки берут во внимание вес 1 погонного метра балки, вес 1 квадратного метра перекрытия, нагрузку на перекрытие временного характера и нагрузку от перегородок на 1 квадратный метр перекрытия. Также учитывается расстояние между балками, измеренное в метрах.
Для примера вычисления максимальной нагрузки на деревянную балку примем усредненные значения, согласно которым вес перекрытия составляет 60 кг/м², временная нагрузка на перекрытие равна 250 кг/м², перегородки будут весить 75 кг/м². Вес самой балки очень просто вычислить, зная ее объем и плотность. Предположим, что используется деревянная балка сечением 0,15х0,2 м. В этом случае ее вес будет составлять 18 кг/пог.м.
Также для примера примем расстояние между брусьями перекрытия равным 600 мм. В этом случае нужный нам коэффициент составит 0,6.
В результате вычисления максимальной нагрузки получаем следующий результат: q=(60+250+75)*0,6+18=249 кг/м.
Когда значение получено, можно переходить к расчету максимального прогиба.
Вычисление значения максимального прогиба
Когда проводится расчет балки, формула отображает в себе все необходимые элементы. При этом стоит учитывать, что формула, используемая для расчетов, может иметь несколько иной вид, если расчет проводится для разных типов нагрузок, которые будут оказывать влияние на балку.
Сначала приведем вашему вниманию формулу, используемую для расчета максимального прогиба деревянной балки с распределенной нагрузкой.
f=-5*q*l4/384*E*J.
Обратите внимание, что в данной формуле Е – это постоянная величина, которая получила название модуль упругости материала. Для древесины эта величина равна 100 000 кгс/ м².
Обращаем внимание, что когда производится расчет прогиба с учетом схемы с сосредоточенной нагрузкой, формула приобретает следующий вид:f=-F*l3/48*E*J, где:
F – сила давления на брус.
Также обращаем внимание на то, что значение модуля упругости, используемое в расчетах, может различаться для разных видов древесины. Влияние оказывают не только порода дерева, но и вид бруса. Поэтому цельная балка из дерева, клееный брус или оцилиндрованное бревно будут иметь разные модули упругости, а значит, и разные значения максимального прогиба.
Вы можете преследовать разные цели, совершая расчет балок на прогиб. Если вы хотите узнать пределы деформации элементов конструкции, то по завершении расчета стрелки прогиба вы можете остановиться. Если же ваша цель – установить уровень соответствия найденных показателей строительным нормам, то их нужно сравнить с данными, которые размещены в специальных документах нормативного характера.
Двутавровая балка
Обратите внимание на то, что балки из двутавра применяются несколько реже в силу их формы. Однако также не стоит забывать, что такой элемент конструкции выдерживает гораздо большие нагрузки, чем уголок или швеллер, альтернативой которых может стать двутавровая балка.