Проводимость меди и алюминия таблица
Проводимость меди и алюминия таблица
При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.
Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду.
Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.
Электрическое сопротивление
Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.
На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.
Рисунок 1. Условное обозначение электрического сопротивления |
Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б.
В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании.
Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.
Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.
Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.
Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.
За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).
При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.
1. Сопротивление проводников
Удельное электрическое сопротивление
Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).
В таблице 1 даны удельные сопротивления некоторых проводников.
Таблица 1
Удельные сопротивления различных проводников
Материал проводника | Удельное сопротивление ρ в |
Серебро Медь Алюминий Вольфрам Железо СвинецНикелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) РтутьНихром (сплав никеля, хрома, железа и марганца) | 0,016 0,0175 0,03 0,05 0,13 0,2 0,42 0,43 0,5 0,941,1 |
Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро.
1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом.
Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.
Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.
Сопротивление проводника можно определить по формуле:
где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².
Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².
Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².
Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.
Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.
Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.
Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.
Материал проводника характеризует его удельное сопротивление.
По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора.
Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться.
Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.
У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом.
Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры.
Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.
Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.
Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления
Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).
Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).
Таблица 2
Значения температурного коэффициента для некоторых металлов
Металл | α | Металл | α |
Серебро Медь Железо ВольфрамПлатина | 0,0035 0,0040 0,0066 0,00450,0032 | Ртуть Никелин Константан НихромМанганин | 0,0090 0,0003 0,000005 0,000160,00005 |
Из формулы температурного коэффициента сопротивления определим rt:
rt = r0 [1 ± α (t – t0)].
Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.
rt = r0 [1 ± α (t – t0)] = 100 (1 + 0,0066 × 200) = 232 Ом.
Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.
Электрическая проводимость
До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.
Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.
Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.
Электрическая проводимость измеряется в (1/Ом) или в сименсах.
Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.
Если r = 20 Ом, то
Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,
Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)
Выбор сечения провода, кабеля (медного, алюминиевого) по мощности. Расчет сечения исходя из диаметра (видео)
Использование полезной работы электрического тока, уже является чем-то обыденным, незаменимым и само собой разумеющимся. Действительно, с тех пор, когда были получены первые токи от первой батарейки, великим ученым Алессандро Вольтом, в далеком 1800 году, прошло всего-то два столетия.
Проводимость меди и алюминия таблица — Справочник металлиста
Прочитав эту статью, вы узнаете о таких вопросах:
В любой сфере нашей жизни мы активно используем электричество. Конечно, наличие электричества в доме является одним из главных требований нашего существования. Это электричество подается по проводам. Причем они подходят как к самому дому или квартире, так и проходят по всем комнатам нашего дома. Для передачи электрического тока используются различные типы проводки.
Наиболее популярной является проводка алюминиевая. Собственно на такой проводке мы и остановимся в этой статье. Сначала хочется отметить, что проводка из алюминия не может похвастаться отличными эксплуатационными характеристиками. Другими словами ее нельзя назвать самой подходящей или же самой идеальной. Однако она встречается практически в каждом доме.
И этот факт обусловлен особенностями самого алюминия.
Преимущества
Этот металл обладает малым весом. Это преимущество сильно сказывается в тех ситуациях, когда нужно использовать большое количество алюминиевого кабеля.
Так, легкость этого металла делает алюминиевый кабель фаворитом при прокладке ЛЭП. Стоит отметить, что алюминий — это очень распространенный металл, и он стоит меньше меди.
Собственно эти два фактора и стали причиной использования алюминиевой проводки при строительстве жилья в СССР.
Еще одной чертой, которую можно отнести к преимуществам, является стойкость к коррозии. Хотя здесь есть свои нюансы. Дело в том, что поверхность алюминия при контакте с воздухом сразу (практически мгновенно) окисляется.
Сверху образуется пленка, которая в дальнейшем защищает всю остальную часть проволоки от окисления. Минус заключается в плохой способности пленки проводить ток.
В результате в местах соединения кабелей возникают проблемы в прохождении тока.
Недостатки
Алюминиевая проводка характеризуется высоким удельным электрическим сопротивлением. Это сопротивление равняется 0,0271 Ом х кв.мм/м. Учитывая данный факт, в новейших редакциях ПУЭ отмечается, что в квартире или доме можно использовать только ту алюминиевую проводку, поперечное сечение которой превышает 16 кв. миллиметров.
В конечном итоге получается так, что для обеспечения необходимого уровня пропускной способности нужно использовать кабель с большим сечением. Другими словами нужно монтировать проводку, которая имеет большую толщину. Если сравнивать проводку из меди, то она обладает таким удельным электрическим сопротивлением, которое равняется 0,0175 Ом х кв.мм/м.
Такая проводка более эффективная и для использования в доме можно брать медный кабель с меньшим поперечным сечением.
Как уже было отмечено выше, алюминий способен окисляться и пленка, образующаяся во время этого процесса, имеет плохую токопроводимость. Здесь есть еще один нюанс: эта пленка образуется из верхней части провода.
В результате происходит небольшое уменьшение его поперечного сечения, а в результате растет сопротивление.Так как пленка на алюминиевой проводке обладает высоким сопротивлением, то в местах соединения отдельных частей проволоки растет переходное сопротивление. Вследствие этого проявляется в нагревании проводки в таких местах.
В тех ситуациях, когда возрастает нагрузка на алюминиевую проводку, она начинает нагреваться. Если провод обладает достаточным поперечным сечением, то ничего страшного нет.
Однако если проводка не рассчитана на такую нагрузку или используется больше своего нормированного срока эксплуатации, то это обязательно приводит к ее нагреву.
Последний факт можно назвать очень плохим для мест соединения. Дело в том, что при нагревании алюминия происходит изменение его формы и пластичности. Конечно, проволока расширяется. После того, как нагрузка исчезла и кабель остыл, он набирает привычной формы. Однако после неоднократного повторения таких процессов происходит ослабление контакта концов электропроводов.
Алюминий также обладает высокой хрупкостью. Она сильно возрастает после того, как он перегревается. Что касается срока службы, то для алюминиевой проводки он составляет 25 лет. После этого нужно устанавливать другой тип проводки.
Правила использования алюминиевой проводки
Как видно, проводку, сделанную из алюминия, не можно назвать наиболее оптимальным вариантом для использования в доме. Однако ее можно использовать, если соблюдать определенные требования:
- Поперечное сечение должно быть не менее 16-ти кв. миллиметров.
- Для соединения отдельных частей нужно использовать зажимные контакты. При этом следует использовать специальную смазку, благодаря которой не будет осуществляться окисление контактов, и будет сохраняться низкий уровень переходного сопротивления.
Полезный совет: также соединение можно выполнить другим способом. Он заключается в сварке алюминиевых электропроводов в распределительных коробках. Этот способ требуют больших затрат и больше времени. Поэтому многие электрики пытаются избежать его. Учитывая это, каждый, кто монтирует алюминиевую проводку в своем доме, должен наблюдать за работой электриков.
Сравнение с медной проводкой
Таблица сравнения алюминия и меди в проводке
Отметим, что гораздо проще и более безопасным будет использование медной проводки. Выше мы указывали, что медная проводка характеризуется меньшим удельным сопротивлением. Иными словами медный кабель с тем же сечением, что и алюминиевый, может пропустить большее количество тока. Кроме этого медный электропровод:
- является более устойчивым к физическим воздействиям (он не ломается после нескольких сгибаний);
- обладает большим сроком годности;
- не теряет своих токопроводящих свойств во время окисления.
Приметным фактом является и то, что алюминий и медь окисляются. Однако пленки, которые образовались, имеют разные свойства. В первую очередь это касается токопроводимости.
Как мы уже отмечали, окислительная пленка алюминиевой проводки имеет слабую токопроводимость. Аналогичная пленка на медной проводке обладает высокой токопроводимостью.
Электропровода, сделанные из алюминия, окисляются значительно быстрее, чем медные провода.
Медь окисляется при комнатной температуре, однако пленка, которая появляется на поверхности меди, очень слабая и ее легко разрушить. Для этого достаточно крепко скрутить два кабеля.
Сильное окисление меди начинается тогда, когда температура становится больше 70-ти градусов Цельсия. Можно сделать вывод, что более качественным и, главное, более безопасным является медный кабель.
Причина популярности алюминия кроется в его дешевизне.
Почему нельзя скручивать алюминиевый и медный кабели?
Конечно, если вы планируете осуществить замену электропроводки в доме и не имеете возможности установить все электропровода, изготовленные из меди, то можете совместить эти два типа проводки.
Другими словами вы можете использовать алюминиевые кабели для подачи тока на осветительные приборы и медные провода для подачи тока к розеткам или мощным электроприборам.
При этом в некоторых местах возникнет необходимость соединения медной и алюминиевой проводок.
С самого начала следует отметить, что прямой контакт меди и алюминия как минимум является не рекомендуемым. Это означает то, что скручивать электропровода из двух металлов нельзя.Почему? Причина заключается в их физических свойствах. Эти два металла имеют разные величины токопроводимости и в результате места их соединения будут нагреваться.
Также этому способствует наличие окислительных пленок.
Если говорить об окислительной пленке на медной проводке, то она может проводить ток и поэтому не сильно влияет на нагрев. А вот такая же пленка на алюминиевом электропроводе обладает сильным сопротивлением и, соответственно, пропускает меньше тока.
Данный факт усиливает нагревание. В процессе нагревания кабеля расширяются. Поскольку медь — это более твердый металл чем алюминий, то медный электропровод приводит к некоторой деформации алюминиевого провода.
В результате, когда происходит охлаждение, само соединение выглядит несколько по-другому.
После нескольких раз нагревания и охлаждения соединение ослабляется, а это приводит к появлению проблем в виде перегрева, искрения и горения. Также имеет место и появление гальванической пары. Однако она появляется только тогда, когда на соединение попадает влага.
В противном случае эта пара не образуется. Гальваническая пара появляется потому, что в месте соединения таких проводок, которые мы называем медной и алюминиевой, начинается диссоциация окислов электропроводов. Этот процесс заключается в распаде окиси на заряженные ионы.
Электропроводность меди и алюминия таблица
В бытовых условиях чаще всего используются алюминий, медь и алюмомедь.
С первыми двумя все понятно, но вот что такое алюмомедь? Это не сплав, как можно подумать сначала, поскольку тяжелый и легкий металлы соединяются крайне плохо, а композитный материал, состоящий из алюминиевого сердечника и покрытый сверху слоем меди. Зачем соединять эти два материала, станет понятно после рассмотрения их свойств.
Провода из алюминия мягкие и при этом совсем не гибкие, их можно прокладывать там, где нет острых углов.
Алюминий — прекрасный материал, легкий, дешевый, обладает вполне
приличной электропроводностью, хорошо отдает тепло, химически стоек.
Однако есть несколько «но», существенно ухудшающих репутацию данного металла.
- Алюминиевый провод мягкий, но не гибкий. Вспомните, как хорошо переламывается проволока из этого материала, если перегнуть ее несколько раз. Вывод простой — такие провода используют только в стационарных установках и там, где нет острых углов поворота кабеля при прокладке.
- Алюминий быстро окисляется на воздухе. Оксид алюминия — тугоплавкая пленка темного цвета, которая образуется на поверхности металла и является диэлектриком. В местах контакта может серьезно препятствовать течению электрического тока. Отсюда и излишний перегрев, и риск потерять контакт в местах соединения.
- Алюминий — прекрасный проводник, но только в случае, если не содержит примесей, чего добиться очень трудно. По сравнению с медью, этот металл обладает проводимостью, меньшей в полтора раза.
Схема соединения проводов сваркой.
Медь, наряду с многочисленными плюсами, обладает не меньшим количеством минусов.
Достоинства: проводимость выше, чем у алюминия, гибкость, не образует оксидной пленки. От гибкости зависит толщина жилы. К примеру, алюминиевые проводники не могут быть тоньше 2,5 мм 2 , а из меди можно изготавливать жилы толщиной 0,3 мм 2 .
Недостатки: дороговизна, высокая плотность, а следовательно, и вес, невозможность прямого соединения с алюминиевыми жилами. При контакте эти два металла образуют гальваническую пару, и возникающие токи разрушают контакт.
Именно поэтому при необходимости контакта используют специальные клеммы соединения.
Алюмомедь — механический композит, состоящий из алюминиевого сердечника и медной рубашки, которая занимает 10 % от объема жилы. Сочетает в себе положительные качества алюминия и меди.
Минусы: по всем показателям уступает проводникам из отдельных металлов. Плюс — низкая стоимость.
Сечение жилы
Провода и кабели выпускаются с сечением жилы от 0,3 до 800 мм 2 . В быту такие крайние значения не используются. Крайние показатели для дома — это проводники с сечением жил от 0,35 до 16 мм 2 , редко — 25 мм 2 . Прежде всего толщина жилы зависит от напряжения и силы тока. Зависимость здесь простая: чем больше сечение, тем выше проводимая нагрузка.
Расчет необходимого сечения, в зависимости от нагрузки, производится по сложным формулам, поэтому все данные по этому вопросу показаны в табл. 1. В табл. 2 представлены более подробные данные о зависимости нагрузки от сечения медных проводников.
Таблица 1 — Зависимость сечения ТПЖ от силы тока
Таблица 1 — Зависимость сечения ТПЖ от силы тока.
Таблица 2 — Сечение проводов, сила тока, мощность и характеристики нагрузки
Таблица 2 — Сечение проводов, сила тока, мощность и характеристики нагрузки.
К материалам этого типа предъявляются следующие требования: минимальное значение удельного электрического сопротивления; достаточно высокие механические свойства (главным образом предел прочности при растяжении и относительное удлинение при разрыве); способность легко обрабатываться, что необходимо для изготовления проводов малых и средних сечений; способность образовывать контакты с малым переходным сопротивлением при пайке, сварке и других методах соединения проводов; коррозионная стойкость.
Медь
1. Малое удельное сопротивление (меньше только у серебра).
2. Достаточно высокая механическая прочность (по сравнению с Aℓ).
3. Стойкость к коррозии (по сравнению с Fe).
4. Хорошо обрабатывает (получают тонкую проволоку и лист).
5. Легко паяется и сваривается.
1. Она редка, поэтому дорога.
2. В ряде случаев недостаточная механическая прочность.
3. Окисляется на воздухе (медные провода на воздухе в условиях близости моря подвергается усиленной коррозии за счёт действия содержащихся в воздухе солей).
Алюминий
Алюминий является вторым по значению (после меди) проводниковым материалом.
1. Алюминий в 3,5 раза легче меди. Если из алюминия и меди сделать провода равного сопротивления, то провод из Al хоть и будет иметь сечение в 1,63 раза больше, но всё равно будет в 2 раза легче медного.
2. Широко распространён в природе (его содержание в земной коре не меньше 7,5%).
3. Алюминий покрыт тонкой оксидной плёнкой, которая предохраняет его от дальнейшей коррозии (на него не действует водяной пар, пресная и морская вода).4. Алюминий хорошо обрабатывается, из него можно получать тонкую фольгу (6÷7 мкм).
1. Алюминий имеет низкую механическую прочность (тонкую проволоку из него получить не удаётся).
2. Из-за плотной оксидной плёнки алюминий не паяется обычным способом, для этого нужны специальные припои и ультразвуковые паяльники.
3. Удельное сопротивление алюминия в 1,63 раза больше, чем у меди.
4. В месте контакта Al с другими металлами возникает большое переходное сопротивление и идёт усиленная коррозия, так как возникает гальваническая пара. Электрохимическая коррозия усиливается в присутствии влаги.
Алюминий применяется в следующих изделиях:
− провода ЛЭП (алюминиевые и сталеалюминевые, где механическую нагрузку несёт сталь);
− оболочки кабеля для замены свинца (защита от влаги);
− обмотки некоторых трансформаторов и т.д.
Железо (сталь)
Проводимость меди и алюминия: удельная проводимость
Электрическая проводимость или электропроводность — это способность тела проводить электрический ток.
Это понятие крайне важно в электротехнике: металлы, хорошо проводящие ток, используются в проводах, плохие проводники или диэлектрики — для защиты людей от электричества.
Лучшим проводником является серебро, на втором месте стоит медь (она совсем немного уступает серебру), далее идут золото и алюминий.
Достоинства и недостатки медных проводов
Медь — это пластичный переходный металл. Имеет золотисто-розовый цвет, встречается в природе в виде самородков. Используется человеком с давних времен — в его честь была названа целая эпоха.
В таблице дано удельное электрическое сопротивление стали и других металлов
Сегодня медные провода часто используют в электронных устройствах. К их достоинствам относятся:
- Высокая электропроводность (металл занимает второе место по этому показателю, уступая только серебру). По сравнению с алюминием медь эффективнее в 1,7 раза: при равном сечении медный кабель пропускает больше тока.
- Сварку, пайку и лужение можно проводить без использования дополнительных материалов.
- Провода обладают хорошей эластичностью и гибкостью, их можно сворачивать и сгибать без особого вреда.
Медь лишь немного уступает серебру
Однако до недавнего времени медные провода проигрывали алюминиевым из-за нескольких недостатков:
- Высокая плотность: при разных размерах медный провод будет весить больше, чем алюминиевый;
- Цена: алюминий в несколько раз дешевле;
- Медь окисляется на открытом воздухе: впрочем, это не влияет на ее работу и легко устраняется.
Какое сопротивление меди и алюминия
Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.
Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.
В электротехнике значение имеют 2 термина:
- Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
- Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
Алюминиевые кабели востребованы не меньше медных
Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.
Какое удельное сопротивление стали
Сталь — это металлический сплав железа с углеродом и другими элементами. В ее состав входит не менее 45% железа, содержание углерода колеблется от 0,02% до 2,14%. В зависимости от точного состава сталь используется в строительстве, машиностроении и приборостроении, а также во многих областях, например, в транспорте, народном хозяйстве, при производстве бытовых приборов.
Стальные провода отличаются невысокой проводимостью
Проводимость стали составляет всего 7,7 миллионов См/м, удельное сопротивление — 0,13 мкОм/м, то есть оно довольно высоко. Сталь плохо проводит электричество и не применяется при производстве непосредственно кабелей.
Однако нередко можно встретить внешнюю оцинкованную стальную оплетку, которая защищает провода от механического растяжения.
Такая защита нужна, если кабель проходит под дорогой или на нестабильном грунте, если есть риск резко дернуть провод.
Также из стали делают ПНСВ — провод нагревательный со стальной жилой, имеющий изоляцию из винила. Его размещают внутри конструкции до заливания бетона и используют в дальнейшем для электрообогрева готового блока. Электричество кабель практически не проводит.
Из стали производят провод ПНСВ
Сравнение проводимости разных видов стали
Характеристики стали зависят от ее состава и температуры:
- Для углеродистых сплавов сопротивление довольно низкое: оно составляет 0,13-0,2 мкОм/м. Чем выше температура, тем больше значение;
- Низколегированные сплавы имеют более высокое сопротивление — 0,2-0,43 мкОм/м;
- Высоколегированные стали отличаются высоким сопротивлением — 0,3-0,86 мкОм/м;
- Благодаря высокому содержанию хрома сопротивление хромистых нержавеющих сплавов равняется 0,5-0,6 мкОм/м;
- Хромоникелевые аустенитные стали являются нержавеющими и благодаря никелю имеют высокую сопротивляемость — 0,7-0,9 мкОм/м.
Из стали часто делают оцинкованную оплетку
Медь стоит на втором месте по степени электропроводимости: она отлично пропускает электрический ток и повсеместно используется при изготовлении проводов. Не реже применяют и алюминий: он слабее меди, но дешевле и легче.
Электрическое сопротивление и проводимость
26 марта 2013.
Категория: Электротехника.
При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника.
В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.
Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении.
В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.