Температура плавления алюминиевых сплавов

Алюминий

Температура плавления алюминиевых сплавов

Алюминий вошел в промышленное и бытовое применение относительно не так давно. На пересечении XIX – XX было освоено производство этого металла в промышленных масштабах.

Все дело в том, что началось производство множества товаров, в которых алюминий широко применялся, например, при строительстве катеров, железнодорожных вагонов и пр.

Кстати, именно тогда был показан широкой публике автомобиль с кузовом, выполненным из алюминия.

Анодированный алюминий

Состав и структура алюминия

Алюминий – это самый распространенный в земной коре металл. Его относят к легким металлам. Он обладает небольшой плотностью и массой. Кроме того, у него довольно низкая температура плавления. В то же время он обладает высокой пластичностью и показывает хорошие тепло- и электропроводные характеристики.

Кристаллическая решетка алюминияСтруктура алюминия

Предел прочности чистого алюминия составляет всего 90 МПа. Но, если в расплав добавить некоторые вещества, например, медь и ряд других, то предел прочности резко вырастает до 700 МПа. Такого же результат можно достичь, применяя термическую обработку.

Алюминий, обладающий предельно высокой чистотой – 99,99% производят для использования в лабораторных целях. Для применения в промышленности применяют технически чистый алюминий.

При получении алюминиевых сплавов применяют такие добавки, как – железо и кремний.

Они не растворяются в расплаве алюминия, а из добавка снижает пластичность основного материала, но в то же время повышает его прочность.

Внешний вид простого вещества

Структура этого металла состоит из простейших ячеек, состоящих из четырех атомов. Такую структуру называют гранецентрической.

Проведенные расчеты показывают, что плотность чистого металла составляет 2,7 кг на метр кубический.

Свойства и характеристики

Алюминий – это металл с серебристо-белой поверхности. Как уже отмечалось, его плотность составляет 2,7 кг/м3. Температура составляет 660°C.

Его электропроводность равняется 65% от меди и ее сплавов. Алюминий и бо́льшая часть сплавов из него стойко воспринимает воздействие коррозии. Это связано с тем, что на его поверхности образуется оксидная пленка, которая и защищает основной материал от воздействия атмосферного воздуха.

В необработанном состоянии его прочность равна 60 МПа, но после добавления определенных добавок она вырастает до 700 МПа. Твердость в этом состоянии достигает 250 по НВ.

Алюминий хорошо обрабатывается давлением. Для удаления наклепа и восстановления пластичности после обработки алюминиевые детали подвергают отжигу, при этом температура должна лежать в пределах 350°C.

Получение алюминиевого расплава, как и многих других материалов, происходит после того, как к исходному металлу подвели тепловую энергию. Она может быть подведена как непосредственно в него, так и снаружи.

Температура плавления алюминия напрямую зависит от уровня его чистоты:

    1. Сверхчистый алюминий плавится при температуре 660, 3°C.
    2. При количестве алюминия 99,5% температура плавления составляет 657°C.
    3. При содержании этого металла в 99% расплав можно получить при 643°C.

Алюминиевый расплавПроцесс получения алюминия

Алюминиевый сплав может включать в свой состав различные вещества, в том числе и легирующие. Их наличие приводит к снижению температуры плавления.

Например, при наличии большого количества кремния, температура может понизиться до 500°C. На самом деле понятие температуры плавления относят к чистым металлам.

Сплавы не обладают какой-то постоянной температурой плавления. Этот процесс происходит в определенном диапазоне нагрева.

В материаловедении существует понятие – температура солидус и ликвидус.

Первая температура обозначает ту точку, в которой начинается плавление алюминия, а вторая, показывает, при какой температуре, сплав будет окончательно расплавлен. В промежутке между ними сплав будет находиться в кашеобразном состоянии.

Уменьшение температуры

Перед тем как приступать к плавке металла, можно выполнить определенные операции, которые позволят снизить температуру плавления. Например, иногда расплаву подвергают алюминиевый порошок. В порошкообразном состоянии металл начинает плавиться несколько быстрее.

Но при такой обработке возникает реальная опасность того, что при взаимодействии с кислородом, который содержится в атмосфере алюминиевый порошок, начнет окисляться с большим выделением тепла и образования оксидов металла, этот процесс происходит при температуре 2300 градусов.

Главное, в этот момент плавления не допустить контакта расплава и воды. Это приведет к взрыву.

Относительно низкая температура плавления алюминия позволяет проводить эту операцию в домашних условия.

Надо сразу отметить, что в качестве сырья в домашней мастерской использовать порошкообразную смесь слишком опасно. Поэтому в качестве сырья применяют или чушки, или нарезанную проволоку.

Если к будущему изделию нет особых требований по качеству, то для плавления можно использовать все, что изготовленного из этого металла.

Плавка алюминия в самодельном горне

При этом не особо важно, будет сырье покрыто краской или нет. Когда происходит плавление алюминия, все посторонние вещества просто выгорят и будут удалены вместе со шлаком.

Для получения качественного результата плавки необходимо использовать материалы, которые называют флюсами. Они призваны решать задачу по связыванию и удалению из расплава посторонних примесей и загрязнений.

Домашний мастер, решивший в домашних условиях выполнять плавление алюминия должен отдавать себе отчет в том, что это довольно опасный процесс. И поэтому без применения средств защиты не обойтись.

В частности, должны быть использованы перчатки, фартук, очки. Дело в том, что температура расплава лежит в пределах 600 градусов.

Поэтому имеет смысл использовать средства защиты, которые применяют сварщики.

Использование средств защиты при плавке алюминия

Кстати, при плавлении алюминия и использовании очищающих химикатов необходимо защищать органы дыхания от продуктов их сгорания.

Выбор формы для литья

При выборе формы для отливки алюминия домашний мастер должен понимать, а для какой цели он обрабатывает алюминий. Если будущая отливка будет предназначена для использования в качестве припоя, то использовать, какие-то специальные формы, нет необходимости. Для этого можно использовать металлический лист, на котором можно остудить расплавленный металл.

Но если возникает необходимость получения даже простой детали, то мастер должен определиться с типом формы для литья.

Форму можно изготовить из гипса. Для этого, гипс в жидком состоянии заливают в обработанную маслом форму. После того, как начнет застывать, в него устанавливают литейную модель. Для того, чтобы в форму можно было залить расплавленный металл необходимо сформировать литник.

Для этого в форму устанавливают цилиндрическую деталь. Формы бывают разъемные и нет. Процесс изготовления разъемной формы усложняется тем, что модель будет находиться в двух полуформах. После застывания их разделяют, удаляют модель и соединяют снова. Форма готова к работе.

Кокиль для литья алюминия

Для получения качественных отливок целесообразно использовать металлические формы (кокили), но изготавливать их целесообразно только в заводских условиях.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Свойства алюминия: удельный вес и теплопроводность, производство, применение, сплавы и температура плавления

Температура плавления алюминиевых сплавов

Алюминий — всем известный из школьного курса химии элемент из таблицы Менделеева. В большей части соединений он проявляет трехвалентность, но в условиях высоких температур достигает некоторой степени окисления. Одним из самых важных его соединений является оксид алюминия.

Основные характеристики алюминия

Алюминий — серебристый металл с удельным весом 2,7*103кг/м3 и плотностью 2,7 г/см3. Легкий и пластичный, хорош, как проводник электроэнергии, благодаря тому, что теплопроводность алюминия довольно высока — 180 ккал/м*час*град (указан коэффициент теплопроводности). Теплопроводность алюминия превышает аналогичный показатель чугуна в пять раз и железа в три раза.

Благодаря своему составу, этот металл можно легко раскатать в тонкий лист или вытянуть в проволоку.

При соприкосновении с воздухом на его поверхности образуется оксидная пленка (оксид алюминия), которая является защитой от окисления и обеспечивает его высокие антикоррозионные свойства.

Тонкий алюминий, например, фольга или порошок этого металла мгновенно сгорают, если их нагреть до высоких температур и становятся оксидом алюминия.

Металл не особенно устойчив к агрессивным кислотам. К примеру, его можно растворить в серной или соляной кислотах даже, если они разбавленны, особенно, если их нагреть.

Однако он не растворяется ни в разбавленной ни в концентрированной и при этом холодной азотной кислоте, благодаря оксидной пленке.

Определенное воздействие на металл имеют водные растворы щелочей — оксидный слой растворяется и образуются соли, содержащие этот металл в составе аниона — алюминаты.

Известно, что алюминий является самым часто встречающимся металлом в природе, но впервые в чистом виде его смог получить ученый-физик из Дании Х. Эрстед еще в 1925 году XIX века.

Этот металл занимает третье место по распространенности в природе среди элементов и является лидером среди металлов. 8,8% алюминия содержит земная кора.

Его выявили в составе слюд, полевых шпатов, глин и минералов.

Производство и применение алюминия

Процесс производства очень энергоемкий и поэтому первый большой завод в нашей стране был построен и запущен в XX веке. Основным сырьем для получения этого металла является оксид алюминия. Чтобы его получить, необходимо минералы, содержащие алюминий или бокситы, очистить от примесей.

Далее электролитическим способом расплавляют естественный или полученный искусственным путем криолит при температуре чуть ниже 1000 ºС . Затем начинают понемногу добавлять оксид алюминия и сопутствующие вещества, необходимые для улучшения качества металла. В процессе оксид начинает разлагаться и выделяется алюминий.

Чистота получаемого металла 99,7% и выше.

Этот элемент нашел свое применение в пищевом производстве в качестве фольги и столовых приборов, в строительстве используют его сплавы с другими металлами, в авиации, электротехнике в качестве заменителя меди для кабелей, как легирующая добавка в металлургии, алюмотермии и других отраслях.

Что такое температура плавки металлов?

Температура плавки металлов – значение температуры нагревания металла, при которой начинается процесс перехода из исходного состояния в другое, то есть процесс противоположный кристаллизации (отвердевания), но неразрывно связаный с ней.

Итак, для расплавления металл нагревают извне до температуры плавки и продолжают нагревать для преодоления границы фазового перехода.

Суть в том, что показатель температуры плавки означает температуру, при которой металл находится в фазовом равновесии, то есть между жидким и твердым телом. Другими словами существует одновременно, как в том, так и в другом состоянии.

А для плавления нужно нагреть его больше пограничной температуры, чтобы процесс пошел в нужную сторону.

Стоит сказать о том, что только для чистых составов температура плавки постоянна.

Если в составе металла находятся примеси, то это сместит границу фазового перехода, а, соответственно, и температура плавления будет другой.

Это объясняется тем, что состав с примесями имеет иную кристаллическую структуру, в которой атомы взаимодейстуют между собой по-другому. Исходя из этого принципа, металлы можно разделить на:

  • легкого плавления, такие как ртуть и галлий, например, (температура плавки до 600°С)
  • среднеплавкие — это алюминий и медь (600-1600°С)
  • тугоплавкие — молибден , вольфрам (больше 1600°С).

Знание показателя температуры плавления необходимо, как при производстве сплавов для правильного расчета их параметров, так и при эксплуатации изделий из них, поскольку этот показатель определяет ограничения их использования. Уже давным давно для удобства ученые физики свели эти данные в одну таблицу. Существуют таблицы температур плавки как металлов, так и их сплавов.

Температура плавления алюминия

Плавление — процесс перерабатывания металлов обычно в специальных печах для получения сплава нужного качества в жидком состоянии .

Как уже говорилось выше, алюминий относится к среднеплавким металлам и плавится при нагреве до 660ºС.

При изготовлении изделий из металла температура плавления влияет на выбор плавильной печи или агрегата и, соответственно, используемых для отливки огнеупорных форм.

Указанная температура относится к процессу расплавки чистого алюминия. Так как в чистом виде он применяется реже, а введение в его состав примесей меняет температуру плавления. Сплавы алюминия изготавливаются для того, чтобы изменить какие-либо его свойства, увеличить прочность, например, или жароустойчивость. В качестве добавок применяют:

  • цинк
  • медь
  • магний
  • кремний
  • марганец.

Добавление примесей влечет за собой снижение электропроводности, ухудшение или улучшение коррозионных свойств, повышение относительной плотности.

Обычно добавление других элементов в металл приводит к тому, что температура плавления сплава понижается, но не всегда. К примеру, добавление меди в объеме 5,7% приводит к понижению температуры плавления до 548ºС. Полученный сплав называют дюралюминием, его подвергают дальнейшей термической закалке. А алюминиево-магниевые составы плавятся при температуре 700 — 750ºС.

Во время процесса плавления необходим строгий контроль температуры расплава, а также присутствия газов в составе, которые выявляют через технологические пробы или способом вакуумной экстракции. На заключительной стадии производства сплавов алюминия проводят их модифицирование.

  • Фёдор Ильич Артёмов
  • Распечатать

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф.

Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде.
Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные.

В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия.

В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города. В 1919 из этого материала был создан первый самолёт.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки.

Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С.
Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла.

Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты.  Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции.

Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью.

Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру.

Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.
Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов.

Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия.

Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства.

Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий — это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель.

В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит.

С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Получение

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл.

Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов.

  Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур.

При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов.

Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера.

В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма.

Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия.

Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С).

Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Применение

Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля).

Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ.

Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.

Рассмотрим, как используют различные изделия из алюминия

Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.

Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.

Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.

Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.

Алюминиевый круг — это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.

Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.
Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания.

Больше всего металла в овсянке, горохе, пшенице, рисе.

Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.

Алюминиевый лист

Алюминиевая плита

Алюминиевые чушки

Алюминиевые уголки

Алюминиевая проволока

При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.

Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.

Особенности и сферы применения алюминиевых сплавов

Температура плавления алюминиевых сплавов

Алюминиевые сплавы популярны в различных сферах. Металл и смеси на его основе входят в топ-5 самых распространённых на земле. При изготовлении деталей, проводов или корпусов из этого материала важно понимать, какие виды сплавов алюминия существуют и как они классифицируются.

Характеристика алюминия

Чтобы понимать, какие свойства имеют сплавы алюминия, нужно знать характеристики основного материала. Он представляет собой лёгкий и блестящий металл. Алюминий хорошо проводит тепло и электричество благодаря чему из него изготавливают провода и различные радиодетали. Из-за низкой температуры плавления его не используют в сильно нагревающихся конструкциях.

Сверху алюминий защищён оксидной плёнкой, которая защищает материал от разрушительного воздействия факторов окружающей среды. В природе этот металл содержится в составе горных пород. Чтобы улучшить характеристики алюминия, к нему добавляют другие материалы и получаются более качественные смеси.

Состав алюминия и его сплавов обуславливает характеристики готовых изделий. Чаще всего, к этому металлу добавляют медь, марганец и магний.

Температура плавления алюминия — 660 градусов по Цельсию. По сравнению с другими металлами это низкий показатель, который ограничивает область применения металла.

Чтобы повысить его жаростойкость, к нему добавляют железо. Дополнительно в состав сплава добавляется марганец и магний. Эти компоненты повышают прочность готового состава.

В итоге получается сплав известный под названием «дюралюминий».

Отдельно нужно поговорить о том, как магний влияет на характеристики сплава:

  1. Алюминиевый сплав с большим количеством магния будет обладать высоким показателем прочности. Однако его коррозийная устойчивость значительно снизится.
  2. Оптимальное количество магния в составе — 6%. Таким образом можно избежать покрытия поверхностей ржавчиной и появления трещин при активной эксплуатации.

Смесь марганца с алюминием позволяет получить материал, который невозможно обрабатывать термическим методом. Закалка не будет изменять структуру металла и его характеристики.

Чтобы добиться максимальных показателей прочности не в убыток коррозийной устойчивости, изготавливаются смеси из алюминия, цинка и магния. Особенности сплава:

  1. Повысить показатель прочности можно с помощью термической обработки.
  2. Нельзя пропускать через заготовки из этой смеси электричество. Связано это с тем, что после пропускания тока ухудшится устойчивость к коррозийным процессам.
  3. Чтобы повысить устойчивость к образованию и развитию коррозии, в алюминиевый сплав добавляется медь.

Также к основному материалу может добавляться железо, титан или кремний. От новых компонентов изменяется температура плавления, показатель прочности, текучесть, пластичность, электропроводность и коррозийная устойчивость.

Производство алюминия

В природе алюминий можно найти в составе горных пород. Самой насыщенной считается боксит. Производство этого металла можно разделить на несколько этапов:

  1. В первую очередь руда дробится и сушится.
  2. Получившаяся масса нагревается над паром.
  3. Обработанная смесь пересыпается в щелочь. Во время этого процесса из неё выделяются оксиды алюминия.
  4. Состав тщательно перемешивается.
  5. Далее получившийся глинозем подвергается действию электрического тока. Его сила доходит до 400 кА.

Последним этапом является отливка алюминия в формы. В этот момент в состав могут добавляться различные компоненты, которые изменяют его характеристики.

Особенности классификации сплавов

Сплавы на основе алюминия позволяют эффективнее использовать основной материал и расширить сферу его применения. Для изменения характеристик используются различные виды металлов. Редко добавляется железо или титан.

Сплавы алюминия разделяются на две большие группы:

  1. Литейные. Текучесть улучшается с помощью добавления в состав кремния. Расплавленный металл заливается в заранее подготовленные формы.
  2. Деформируемые. Из этих смесей изначально изготавливают слитки, после этого с помощью специального оборудования им придаётся требуемая форма.

В отдельную группу выделяется технический алюминий. Он представляет собой материал, в котором сдержится менее 1% посторонних примесей и компонентов. Из-за этого на поверхности металла образуется оксидная плёнка, которая защищает его от воздействия факторов окружающей среды. Однако показатель прочности у технического металла низкий.

Обрабатывают слитки разными методами. Это зависит от того, какую форму необходимо получить после обработки. Технологические процессы:

  1. Прокатка. Метод применяется при изготовлении фольги и цельных листов.
  2. Ковка. Технологический процесс, с помощью которого изготавливаются детали сложной формы.
  3. Формовка. Также применяется для изготовления заготовок сложной формы.
  4. Прессование. Таким образом изготавливаются трубы, профиля и прутья.

Дополнительно, чтобы улучшились характеристики, металл подвергается термической обработке.

Спрессованные профиля из алюминиевого сплава

Марки алюминия и алюминиевых сплавов

Сплавы алюминия обозначаются по ГОСТ 4784-97. В государственном документе указывается маркировка алюминиевых сплавов, состоящая из букв и цифр. Расшифровка:

  1. Д — этой буквой обозначается дюралюминий.
  2. АК — маркировка алюминиевых сплавов, обработанных в процессе ковки.
  3. А — обозначается технический материал.
  4. АВ — авиаль.
  5. АЛ — обозначение литейного металла.
  6. АМц — марки алюминия с добавлением марганца.
  7. В — сплав с высоким показателем прочности.
  8. САП — порошки, спеченные в подготовленных формах.
  9. АМг — смеси с добавлением магния.
  10. САС — сплавы спеченные.

После буквенного обозначения указывается номер, который указывает на марку алюминия. После цифр указывается буква. Почитать детальную расшифровку цифр можно в ГОСТе.

Виды и свойства алюминиевых сплавов

Работая с этим металлом и смесями на его основе, важно знать свойства алюминиевых сплавов. От этого будет зависеть область применения материала и его характеристики. Классификация алюминиевых сплавов приведена выше. Ниже будут описаны самые популярные виды сплавов и их свойства.

Алюминиево-магниевые сплавы

Сплавы алюминия с магнием обладают высоким показателем прочности и хорошо поддаются сварке. Дополнительного компонента в состав не добавляют более 6%. В противном случае ухудшается устойчивость материала к коррозийным процессам.

Чтобы дополнительно увеличить показатель прочности без ущерба защите от коррозии, алюминиевые сплавы разбавляются марганцем, ванадием, хромом или кремнием.

От каждого процента магния, добавленного в состав, показатель прочности изменяется на 30 Мпа.

Алюминиево-марганцевые сплавы

Чтобы увеличить показатель коррозийной устойчивости, алюминиевый сплав разбавляется марганцем. Этот компонент дополнительно увеличивает прочность изделия и показатель свариваемости. Компоненты, которые могут добавляться в такие составы — железо и кремний.

Сплавы с алюминием, медью и кремнием

Второе название этого материала — алькусин. Марки алюминия с добавлением меди и кремния идут на производство деталей для промышленного оборудования. Благодаря высоким техническим характеристикам они выдерживают постоянные нагрузки.

Алюминиево-медные сплавы

Смеси меди с алюминием по техническим характеристикам можно сравнить с низкоуглеродистыми сталями. Главный минус этого материала — подверженность к развитию коррозийных процессов.

На детали наносится защитное покрытие, которое сохраняет их от воздействия факторов окружающей среды. Состав алюминия и меди улучшают с помощью легирующий добавок.

Ими является марганец, железо, магний и кремний.

Алюминиево-кремниевые сплавы

Называются такие смеси силумином. Дополнительно эти сплавы улучшаются с помощью натрия и лития. Чаще всего, силумин используется для изготовления декоративных изделий.

Сплавы с алюминием, цинком и магнием

Сплавы на основе алюминия, в которые добавляется магний и цинк, легко обрабатываются и имеют высокий показатель прочности. Увеличить характеристики материала можно проведя термическую обработку. Недостаток смеси трёх металлов — низкая коррозийная устойчивость. Исправить этот недостаток можно с помощью легирующей медной примеси.

Авиаль

В состав этих сплавов входит алюминий, магний и кремний. Отличительные особенности — высокий показатель пластичности, хорошая устойчивость к коррозийным процессам.

Сферы применения алюминиевых сплавов

Сферы применения алюминия и его сплавов:

  1. Столовые приборы. Посуда из алюминия, вилки, ложки и емкости для хранения жидкостей популярны до сих пор.
  2. Пищевая промышленность. Этот металл используется в качестве добавки к пище. Его обозначение в составе продуктов — E Он является пищевой добавкой с помощью которой красят кондитерские изделия или защищают продукты от плесени.
  3. Ракетостроение. Алюминий используется при изготовлении топлива для запуска ракет.
  4. Военная промышленность. Приемлемая цена и малая удельная масса сделала этот металл популярным при производстве деталей для стрелкового оружия.
  5. Стекловарение. Этот материал используется при изготовлении зеркал. Связано это с его высоким коэффициентом отражения.
  6. Ювелирные изделия. Раньше украшения из алюминия были очень популярны. Однако постепенно его вытеснило серебро и золото.

Благодаря высокому показателю электропроводности этот металл используется для изготовления проводов и радиодеталей. В плане проводимости электрического тока, алюминий уступает только меди и серебру.

Нельзя забывать про небольшую удельную массу материала. Алюминий считается одним из самых лёгких видов металла. Благодаря этому он используется для изготовления корпусов для самолётов и машин. Углубляясь в эту тему, можно сказать о том, что весь самолёт состоит минимум на 50% из этого металла.

Также этот металл содержится в организме человека. Если этого компонента не хватает, замедляются процессы роста и регенерации тканей. Человек чувствует усталость, могут появляться мышечные боли и повышенная сонливость. Однако чаще возникают ситуации, когда этого компонента больше нормы в организме.

Из-за этого человек становится раздражительным и нервным. В случае переизбытка требуется отказаться от косметики с добавлением алюминия и медицинских препаратов с его содержанием в составе.
Алюминий. Сплавы алюминия. Алюминиевые рамы для велосипеда.

Смеси с алюминием распространены в разных сферах промышленности. Связано это с тем, что этот металл входит в топ-5 самых распространённых в мире. В природе он содержится в различных рудах. На производстве слабые показатели этого металла увеличиваются с помощью добавления других компонентов.

Так можно поднять устойчивость к коррозийным процессам, прочность, температуру плавления.

Температура плавления алюминиевых сплавов — Справочник металлиста

Температура плавления алюминиевых сплавов

  • 1 Алюминий и его сплавы: особенности материала и проведения сварки
  • 2 Плавление алюминия
    • 2.1 Печи для плавки алюминия
    • 2.

      2 Плавление алюминия в домашних условиях

  • 3 Свойства алюминия: удельный вес и теплопроводность, производство, применение, сплавы и температура плавления
  • 4 Теплофизические свойства, состав и теплопроводность алюминиевых сплавов
    • 4.1 Теплопроводность алюминиевых сплавов
    • 4.

      2 Свойства сплавов алюминия с кремнием, медью, магнием и цинком

    • 4.3 Теплопроводность алюминиевых сплавов в зависимости от температуры
    • 4.4 Теплопроводность сплава алюминия с литием
    • 4.5 Плотность, теплопроводность, теплоемкость алюминиевых сплавов Амц, Амг1, Амг2, Д1, Д16
    • 4.

      6 Теплопроводность, теплоемкость и удельное сопротивление сплава 1151Т

    • 4.7 Температурные коэффициенты линейного расширения (КТР) сплава 1151Т
    • 4.8 Теплофизические свойства алюминиевых сплавов системы Al-Cu-Mn
    • 4.9 Теплофизические свойства алюминиевых сплавов системы Al-Mg-Si
    • 4.

      10 Удельная теплоемкость высокопрочных сплавов алюминия В93, сплав 1933, В95, сплав 1973, В96 и др

    • 4.

      11 Теплопроводность высокопрочных сплавов алюминия В93, сплав 1933, В95, сплав 1973, В96 и др

  • 5 Алюминиевые сплавы: их маркировки и применение

Немногим более века назад алюминий был редким и дорогим материалом. Из него не делали шин или рамы. Короткая история развития алюминия привела человечество к тому, что без этого металла не обходится ни одна сфера жизни, причем список областей применения постоянно расширяется. Объемы потребления алюминия растут с каждым годом. Популярность материала основана на его:

1. положительных механических характеристиках;

2. высокой коррозионной стойкости к воздействию влаги и агрессивных сред;

3. небольшом удельном весе (это один из самых легких конструкционных материалов) при высокой прочности (важно и для шин и для рамы).

Особенности и применение алюминия

Чистый алюминий имеет:

  • низкую твердость, но высокую пластичность;
  • отличную электропроводность и деформируемость;
  • высокую химическую активность и коррозионные свойства (быстро окисляется с образованием защитной поверхностной пленки с высокой плотностью, твердостью и температурой плавления).

Чистота, стойкость в окислительных средах и нетоксичность материала предопределили широкое применение его в пищевой и медицинской промышленности. Из него даже делают сосуды для транспортировки и получения азотной кислоты и пр.

Из-за низкой прочности чистый алюминий редко используется как конструкционный материал при производстве рамы, трубы и т.д.

Как правило, в чистом виде он требуется в электротехнической, химической и пищевой промышленности при производстве шин, проволоки и другого электропроводного материала и элементов. В сплавах с магнием, медью, цинком, кремнием и пр.

этот легкий металл становится прочным и получает хорошие технологические свойства. Из сплавов выпускают уголки, рамы, профиль и пр.

Рост потребления изделий из алюминия и его сплавов стабилен. Налажено производство алюминиевой:

  • проволоки;
  • фольги;
  • чушек;
  • шин;
  • лент;
  • листов;
  • плит;
  • прутков;
  • рам;
  • профиля и пр.;
  • кровли;
  • сварных конструкций различного назначения.

Чистый алюминий, как правило, применяется в электротехнической (высока востребованность алюминиевых электротехнических шин, проволоки и пр.), пищевой и медицинской промышленности. В машиностроении используют изделия из легких алюминиевых сплавов. Алюминиевые рамы популярны при изготовлении транспортных средств.

Это перспективный во всех отношениях конструкционный материал. В конструкциях применяют полуфабрикаты — листы, профили, рамы, трубы и др. из деформируемых сплавов.

При изготовлении более сложных по конструкции решений или при проведении восстановления поврежденных литых изделий (рамы и пр.) требуется сварка алюминия, которая ведется разными способами.

Приоритетный выбирается в зависимости от целей, задач и вида сплава. Основная цель сварки — достижение высокого качества и прочности соединения.

Особенности плавления и сварки алюминия

Алюминий легко подвергается обработке под давлением в состоянии холодном и горячем. Сварка алюминия и его сплавов принципиально отлична от сварки стали Алюминий имеет высокую теплопроводность. Она в пять раз выше, чем у сталей, а потому и тепло активно отводится от свариваемого места. В связи с этим требуется обеспечение высоких вложений тепла.

У алюминия низка температура плавления и в процессе нагрева существенно снижается прочность. Это затрудняет быструю сварку из-за малой глубины провара, требует применения тока максимальной силы в начале с постепенным его снижением к концу сварки.

Текучесть расплавленного металла затрудняет управление сварочной ванной. При сварке приходится применять теплоотводящие подкладки. Очень мало времени необходимо для застывания сварочной ванны, что приводит к неполному газовыделению, образованию пор в шве, плохому соединению.

Дополнительная сложность состоит в том, что этот легкий металл при нагреве не изменит цвет, т.е. сварщик не получает визуальную информацию о достигнутой температуре. Такая специфика повышает риски повреждения и прожога шин, ленты, рамы, прочих элементов в процессе сварки.

Еще одна особенность алюминия в сравнении со сталями состоит в том, что при плавлении его литейная усадка в два раза выше. При затвердевании материала сварочной ванны развивается внутреннее напряжение. Следствием напряжений становится появление дефектов, включая горячие трещины. Склонность к их образованию приводит к ослаблению шва.

За поры ответственен растворенный в алюминии водород, стремящийся выйти из металла наружу. Трещины больше характерны для сплавов алюминия, они возникают при охлаждении металла из-за повышенного содержания кремния. Чтобы избежать осложнений, применяют:

  • более высокую в сравнении со сваркой стали силу сварочного тока;
  • предварительный нагрев заготовки, полуфабриката, рамы, шины, прутка, проволоки, пр.;
  • защитный газ или газовую смесь.

Особенности выбора материалов и сварочной проволоки

Сварочные материалы выбирают в соответствии с типом сварки. Если предстоит сварить технический алюминий с помощью ручной дуговой сварки, используют электроды ОЗА-1 и ОЗАНА-1.

В том случае, если будет завариваться неровность литья или трещины в силуминах, используют электроды ОЗА-2 и ОЗАНА-2, в обмазке которых присутствуют хлоридные и фторидные соли.

Эти компоненты не только обеспечивают устойчивую дугу, но и позволяют ликвидировать оксидную пленку.

В полуавтоматическом виде сварки алюминия и его сплавов применяют защитный газ или газовые смеси, а при аргоно-дуговой сварке — вольфрамовые электроды.

Сварка алюминиевых труб и других изделий из алюминия проводится обычно встык из-за особенностей металла.

Для создания стыковых соединений, где обеспечивается полное проплавление, потребуются удаляемые прокладки с канавками. По ним стечет расплавленный металл и шлаки.

В качестве присадочного материала, как правило, используется сварочная проволока, которая может состоять из чистого технического алюминия или сплава алюминия с:

  • марганцем;
  • магнием
  • кремнием;
  • медью.

При сварке алюминиевых сплавов металл сварочной проволоки необходимо подбирать соответственно химическому составу детали, за исключением сплавов алюминием. При данной ситуации проволока должна содержать больше магния, чем деталь.

Алюминиевая проволока считается довольно сложным материалом. Это касается как ее использования, так и хранения. Если герметичная упаковка вскрывается, рекомендуется использовать проволоку своевременно, поскольку после вскрытия начинается быстрое окисление материала с образованием слоя Al2O3. Температура его плавления в разы выше, что затрудняет сварку.

Хранение во вскрытой упаковке — это гарантия снижения качества проволоки. Ухудшение прогрессирует, если проволока оказывается во влажной среде. Образовавшийся на поверхности изделия слой оксида алюминия необходимо удалять.

Очищающий эффект достигается в момент сварки при положительной поляризации. Место будущего сварного шва на всех деталях и элементах, проволоке, трубах, рамах и пр.

, непосредственно перед проведением сварки тщательно освобождается от любых загрязнений — удаляется жир, пыль и так далее.

Способы сварки алюминия

Сварка алюминиевых сплавов и алюминия проводится несколькими способами. Ее ведут с применением специализированного оборудования и сварочных материалов. Зона сварки защищается инертными газами или флюсами. Среди способов выделяются:

  • сварка вольфрамовым электродом с использованием инертных газов (это специальные электроды для сварки алюминия — большего диаметра, нежели для сварки стали);
  • сварка штучными электродами без использования защитного газа (ручная);
  • более производительная сварка алюминия полуавтоматом в среде инертных газов (проволока при такой сварке подается автоматически).

Постоянным током прямой полярности алюминий не сваривается.

Для проведения сварки требуется переменный или постоянный ток обратной полярности: при наличии катодного распыления образовавшаяся оксидная пленка разрушится, что необходимо для сваривания алюминия и его сплавов.

При прямой полярности не происходит катодное распыления, а потому и пленка остается на проволоке и прочих элементах — рамах, уголках, листах и так далее.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.