Теплопроводность графита и меди

Теплопроводность стали и других сплавов меди, латуни и алюминия, теплопередача

Теплопроводность графита и меди

Теплопроводность алюминия выше теплопроводности железа более чем в 3 раза, что приводит к сильному теплоотводу и широкой зоне разогрева металла, прилегающего к шву.

Теплопроводность алюминия в пять раз больше теплопроводности чугуна, и поэтому алюминиевые сплавы часто заменяют чугун при изготовлении поршней двигателей внутреннего сгорания. Кроме того, поршень из алюминиевого сплава, будучи легче чугунного примерно в три раза, облегчает вес конструкции. Металлы с большой теплопроводностью в то же время являются лучшими проводниками электричества.

Схема аргонового хроматографа фирмы Пай.  

Большая теплоемкость и теплопроводность алюминия обеспечивают равномерную температуру по всей длине трубки.

В виду того что теплопроводность алюминия почти в пять раз выше теплопроводности стали, время нагрева, а следовательно и время вулканизации резиновых смесей в прессформах из этого материала сокращается. Однако следует отметить, что пресс-формы из алюминия быстро изнашиваются, что является их существенным недостатком.

Влияние легирующих добавок на коэффициент линейного теплового расширения алюминия в присутствии второго.  

Примеси оказывают существенное влияние на теплопроводность алюминия в области низких температур.

Теплопроводность оксидной пленки намного хуже теплопроводности алюминия, но вследствие незначительной толщины пленки это не оказывает заметного влияния на общую теплопроводность изделия.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза меньше теплопроводности железа. С повышением температуры теплопроводность титана несколько понижается и при 700 С составляет 0 0309 кал / см сек СС.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза меньше теплопроводности железа. С повышением температуры теплопроводность титана несколько понижается и при 700 С составляет 0 0309 кал / см сек С.

Поэтому, например, теплопроводность титана в 8 — 10 раз меньше теплопроводности алюминия.

Коэффициент теплопроводности меди, серебра и стали изменяется с температурой незначительно, теплопроводность алюминия возрастает в интервале 0 — 400 С приблизительно в 1 6 раза.

При высоких температурах серебро испаряется интенсивнее меди, а медь окисляется и взаимодействует с парами теллуридов. Поэтому для медных шин целесообразно использовать защиту слоем железа.

Контакт шин с термоэлементами осуществляется через промежуточные слои, исключающие диффузию материала шины в термоэлектрический материал.

Поэтому, например, теплопроводность титана в 8 — 10 раз меньше теплопроводности алюминия.

Из сопоставления приведенных данных для алюминия с теплофизи-ческими характеристиками щелочных металлов следует, что температура кипения и теплопроводность алюминия значительно больше, а сечение захвата тепловых нейтронов значительно меньше соответствующих величин — для щелочных металлов.

Имея в виду, что остальные теплофи-зические характеристики сравниваемых металлов приближенно одинаковы, и учитывая также малую упругость паров алюминия при высоких температурах, можно сделать заключение, что с точки зрения теплофи-зических характеристик алюминий, как теплоноситель, имеет определенные преимущества по сравнению со щелочными металлами при решении задач, связанных с высокой температурой теплоносителя.

Следует подчеркнуть, что так как собственно переходное электрическое сопротивление сварных точек ( RK) очень мало ( оно измеряется долями мком), а теплопроводность алюминия и меди велика, то никогда не происходит перегрева в месте сварки при прохождении тока даже и в тех случаях, когда суммарное сечение сварных точек значительно меньше рабочего сечения самой шины. Это тщательно проверено длительными лабораторными и эксплуатационными испытаниями.

Характеристика теплопроводности материалов

Понятие теплопроводности материалов характеризуется способностью переносить тепловую энергию в пределах определенного объекта от нагретых частей к холодным. Процесс осуществляется атомами, молекулами, электронами и происходит в любых телах с неравномерным распределением температуры.

С позиций кинетической физики этот процесс происходит в результате взаимодействия частиц молекул более нагретых участков в пределах образца с другими элементами, отличающимися низшей температурой. Механизм и скорость переноса теплоты зависит от агрегатного состояния вещества.

https://.com/watch?v=z8JhdvjYrl8

Категория теплопроводности предусматривает определение скорости нагревания образца материала и перемещение температурной волны в определенном направлении. Показатель зависит от физических параметров:

  • плотности;
  • температуры фазового перехода в жидкое состояние
  • скорости распространения звука (для диэлектриков).

Теплопроводность — алюминий

Прочность алюминиевой оболочки в несколько раз выше свинцовой, алюминий в 4 2 раза легче свинца ( удельный вес 2 7 и 11 4 соответственно), теплопроводность алюминия примерно в шесть раз выше, чем у свинца, его сопротивление усталости при вибрации в 25 раз больше, чем у свинца. В четырехпроводных сетях переменного тока напряжением до 1000 в с глухозаземленной нейтралью допускается использование алюминиевой оболочки в качестве нулевого рабочего провода.

В этом уравнении di 15 5 — 10 — 3 ( м) — наружный диаметр графитового баллона; d0 1 1 45 — 10 — 3 ( м) — диаметр сечения испытуемого расплавленного металла; q ( z) ( ккал / м2 — час) — тепловой поток на наружной поверхности графитового баллона; К AI и гр ( ккал / м — час — град) — соответственно коэффициенты теплопроводности алюминия и графита.

Из металлов лучше всего проводят тепло серебро и медь. Теплопроводность алюминия примерно в 2 5 раза, железа в в раз, свинца в 12 раз меньше, чем меди.

Корродирующее действие некоторых компонентов флюса на алюминий нейтрализуются промывкой шва и поверхности деталей 10 % — ным раствором азотной кислоты в теплой воде и в последующем горячей водой.

Теплопроводность алюминия почти в 5 раз, а теплоемкость в 2 раза больше, чем стали, поэтому при сварке алюминия необходимо поддерживать более высокую температуру пламени, чем температура плавления алюминия.

Диаграмма прочности алюминия при нагреве в процессе сварки.  

Теплопроводность алюминия в 3 раза больше, чем у стали, коэффициент расширения в 2 раза превышает коэффициент расширения стали.

Кристаллическая решетка алюминия состоит, как и у многих других металлов, из гра-нецентрированных кубов ( см. стр. Теплопроводность алюминия вдвое больше теплопроводности железа и равна половине теплопроводности меди. Его электропроводность намного выше электропроводности железа и достигает 60 % электропроводности меди.

Из металлов лучше всего проводят тепло серебро и медь. Теплопроводность алюминия примерно в 2 5 раза, железа в б раз, свинца в 12 раз меньше, ч м меди.

С понижением чистоты алюминия теплопроводность уменьшается, а с повышением температуры несколько увеличивается. При 100 теплопроводность алюминия составляет — 66 5 % теплопроводности серебра.

Если это количество теплоты известно, то для сечения z по замеренному значению градиента температур в нем можно рассчитать величину коэффициента теплопроводности образца. Окончательный расчет искомой величины коэффициента теплопроводности алюминия состоит в расчете поправки для коэффициента теплопроводности образца на теплоту, проходящую по стенкам графитового баллона.

Некоторые свойства титана, циркония и гафния.  

Атомная структура титана, его большое сродство к электрону оказывают сильное влияние на такие свойства, как электропровод ность и теплопроводность. Теплопроводность его в 8 — 10 раз меньше теплопроводности алюминия. Это имеет существенное значение, например, при обработке металла резанием.

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия.

Теплопроводность титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа. Это необходима учитывать при нагреве металла для обработки давлением и при сварке.

Электросопротивление титана примерно в 6 раз больше чем у железа и в 20 раз больше, чем у алюминия.

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия.

Теплопроводность, титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа.

Стеклопласты на основе фенольных смол имеют теплопроводность такого же порядка. Для сравнения следует заметить, что теплопроводность стали равна, 40, а теплопроводность алюминия находится в пределах от 175 до 200 ккал / м-ч-град.

( пока нет)
Загрузка…

Теплопроводность графита и меди — Справочник металлиста

Теплопроводность графита и меди

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это  способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной.

Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой.

Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”.

В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С.

Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен  постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

Коэффициент теплопроводности

Количество тепла, которое проходит через стены (а по научному – интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло.

Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас  в качестве материалов для утепления зданий  наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов.

Набирает популярность новый материал с улучшенными теплоизоляционными качествами – Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда)  и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2.

, то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур  стену сделать 10 см, то потери тепла будут уже 67 ватт.

Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие “тепловое сопротивление материала”. Это величина обратная теплопроводности.  Если, на пример, теплопроводность пенопласта толщиной 10 см – 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

Коэффициент теплопроводности материалов

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

МатериалКоэфф. тепл. Вт/(м2*К)
Алебастровые плиты0,470
Алюминий230,0
Асбест (шифер)0,350
Асбест волокнистый0,150
Асбестоцемент1,760
Асбоцементные плиты0,350
Асфальт0,720
Асфальт в полах0,800
Бакелит0,230
Бетон на каменном щебне1,300
Бетон на песке0,700
Бетон пористый1,400
Бетон сплошной1,750
Бетон термоизоляционный0,180
Битум0,470
Бумага0,140
Вата минеральная легкая0,045
Вата минеральная тяжелая0,055
Вата хлопковая0,055
Вермикулитовые листы0,100
Войлок шерстяной0,045
Гипс строительный0,350
Глинозем2,330
Гравий (наполнитель)0,930
Гранит, базальт3,500
Грунт 10% воды1,750
Грунт 20% воды2,100
Грунт песчаный1,160
Грунт сухой0,400
Грунт утрамбованный1,050
Гудрон0,300
Древесина – доски0,150
Древесина – фанера0,150
Древесина твердых пород0,200
Древесно-стружечная плита ДСП0,200
Дюралюминий160,0
Железобетон1,700
Зола древесная0,150
Известняк1,700
Известь-песок раствор0,870
Ипорка (вспененная смола)0,038
Камень1,400
Картон строительный многослойный0,130
Каучук вспененный0,030
Каучук натуральный0,042
Каучук фторированный0,055
Керамзитобетон0,200
Кирпич кремнеземный0,150
Кирпич пустотелый0,440
Кирпич силикатный0,810
Кирпич сплошной0,670
Кирпич шлаковый0,580
Кремнезистые плиты0,070
Латунь110,0
Лед 0°С2,210
Лед -20°С2,440
Липа, береза, клен, дуб (15% влажности)0,150
Медь380,0
Мипора0,085
Опилки – засыпка0,095
Опилки древесные сухие0,065
ПВХ0,190
Пенобетон0,300
Пенопласт ПС-10,037
Пенопласт ПС-40,040
Пенопласт ПХВ-10,050
Пенопласт резопен ФРП0,045
Пенополистирол ПС-Б0,040
Пенополистирол ПС-БС0,040
Пенополиуретановые листы0,035
Пенополиуретановые панели0,025
Пеностекло легкое0,060
Пеностекло тяжелое0,080
Пергамин0,170
Перлит0,050
Перлито-цементные плиты0,080
Песок 0% влажности0,330
Песок 10% влажности0,970
Песок 20% влажности1,330
Песчаник обожженный1,500
Плитка облицовочная1,050
Плитка термоизоляционная ПМТБ-20,036
Полистирол0,082
Поролон0,040
Портландцемент раствор0,470
Пробковая плита0,043
Пробковые листы легкие0,035
Пробковые листы тяжелые0,050
Резина0,150
Рубероид0,170
Сланец2,100
Снег1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности)0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности)0,230
Сталь52,0
Стекло1,150
Стекловата0,050
Стекловолокно0,036
Стеклотекстолит0,300
Стружки – набивка0,120
Тефлон0,250
Толь бумажный0,230
Цементные плиты1,920
Цемент-песок раствор1,200
Чугун56,0
Шлак гранулированный0,150
Шлак котельный0,290
Шлакобетон0,600
Штукатурка сухая0,210
Штукатурка цементная0,900
Эбонит0,160

Теплопроводность металлов

Среди большого количества параметров, характеризующие металлы существует и такое понятие как теплопроводность. Ее значение сложно переоценить. Этот параметр применяют при расчете деталей и узлов. Например, шестеренчатых передач. Вообще теплопроводностью занимается целый раздел науки под названием термодинамика.

Теплопроводность металлов

Что такое теплопроводность и термическое сопротивление

Теплопроводность металлов можно охарактеризовать так – это способность материалов (газ, жидкость и пр.) переносить излишнюю тепловую энергию от разогретых участков тела к холодным. Перенос осуществляется свободно движущимися элементарными частицами, в число которых входят атомы электроны и пр.

Теплопроводность графита и меди

Теплопроводность графита и меди

В таблице представлены физические свойства графита в интервале температуры от 20 до 800 °С.

Свойства указаны в направлении, как параллельно, так и перпендикулярно главной оси кристаллов графита.

Теплопроводность графита указана для следующих типов: кристаллический, естественный, прессованный искусственный. По данным таблицы видно, что теплопроводность графита при увеличении его температуры снижается.

Удельная (массовая) теплоемкость углерода при комнатной температуре составляет величину 710 Дж/(кг·град) и при нагревании увеличивается. Плотность углерода находится в диапазоне от 1400 до 1750 кг/м3.

Даны следующие физические свойства графита различной плотности:

  • теплопроводность графита, Вт/(м·град);
  • сопротивление разрыву, МН/м2;
  • модуль упругости графита, МН/м2;
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • удельное электрическое сопротивление, Ом·м;
  • коэффициент теплового линейного расширения (КТлР), 1/град.

Свойства углерода (графита) в зависимости от температуры

В таблице представлены теплофизические свойства углерода (графита) в зависимости от температуры.
Свойства углерода в таблице указаны при температуре от 100 до 2000К в направлении вдоль (параллельно), так и перпендикулярно главной оси кристаллов углерода.

Приведены следующие свойства углерода (графита):

  • коэффициент теплового линейного расширения (КТлР), 1/град;
  • удельная (массовая) теплоемкость, Дж/(кг·град);
  • коэффициент теплопроводности, Вт/(м·град).

Теплопроводность графита в зависимости от плотности

В таблице представлены значения теплопроводности графита различной плотности при температуре 20 °С. Теплопроводность графита указана при направлении теплового потока вдоль главной оси кристаллов и в размерности Вт/(м·град).

По данным таблицы видно, что теплопроводность графита с увеличением плотности заметно увеличивается. Плотность графита в таблице приведена в размерности 103·кг/м3, то есть в т/м3. Плотность графита изменяется в интервале от 1400 до 1750 кг/м3.

Теплопроводность графита в зависимости от температуры

В таблице представлены значения теплопроводности графита плотностью 1650…1720 кг/м3 в зависимости от температуры.

Теплопроводность графита указана при направлении теплового потока, как вдоль, так и поперек главной оси кристаллов, указано также отношение теплопроводности в этих направлениях (оно постоянно и равно приблизительно 1,5).

Значения теплопроводности графита приведены в интервале температуры от 20 до 1800 °С. По значениям в таблице видно, что теплопроводность графита с увеличением температуры уменьшается.

Теплопроводность реакторного графита плотностью 1700 кг/м3 в зависимости от температуры

В таблице представлены значения теплопроводности реакторного графита плотностью 1700 кг/м3 в зависимости от температуры. Теплопроводность указана в направлении теплового потока, идущего, как параллельно, так и перпендикулярно прессованию графитовых стержней.

Значения теплопроводности реакторного графита приведены в интервале температуры от 100 до 1700 К.

Теплопроводность измельченного графита

В таблице дана теплопроводность измельченного графита (углерода) в зависимости от размера частиц при температуре 20 °С.
Размер частиц определялся в зависимости от количества отверстий в сите на 1 квадратный сантиметр (3, 6, 16 отв/см2 и сухая сажа).

Теплопроводность графита указана в размерности Вт/(м·град). Плотность графита в таблице указана в 103·кг/м3, то есть в т/м3.

Теплопроводность слоя графитовых частиц в зависимости от его пористости

В таблице представлены значения теплопроводности слоя графитовых частиц (частиц углерода) при пористости от 0,4 до 0,7. Следует отметить, что при увеличении пористости слоя его теплопроводность снижается.

Коэффициент теплового расширения (КТР) углерода (графита) в зависимости от температуры

В таблице указаны значения коэффициента линейного теплового расширения (КТР) углерода (графита) в зависимости от температуры. КТР в таблице приводится для различных сортов графита: пиролитический графит, графит на основе нефтяного кокса, графит на основе ламповой сажи.

Коэффициент линейного теплового расширения графита приведен в интервале температуры от 100 до 700 °С в размерности 1/град.

Теплоемкость углерода в зависимости от температуры

В таблице представлены значения теплоемкости углерода в зависимости от температуры. Удельная теплоемкость углерода (графита) указана в интервале температуры от 200 до 2000 К.

Теплоемкость углерода в таблице дана массовая и выражена в размерности кДж/(кг·град). По данным в таблице видно, что теплоемкость углерода с увеличением температуры растет.

Теплоемкость природного углерода (графита) при низких температурах

В таблице даны значения атомной (на 1 моль вещества) и удельной теплоемкости углерода при низких температурах. Теплоемкость углерода (графита) указана в интервале температуры от -260 до 17 °С.

Атомная теплоемкость углерода выражена в размерности Дж/(моль·град). Удельная теплоемкость углерода (массовая — на 1 кг массы) выражена в размерности кДж/(кг·град).

По значениям в таблице хорошо видно, что атомная и удельная теплоемкости углерода (графита) с увеличением температуры растут и при очень низких отрицательных температурах.

Источники: 1. Агроскин А.А., Глейбман В.Б. Теплофизика твердого топлива. М., Недра, 1980 — 256 с.

2. Чиркин В.С. Теплофизические свойства материалов ядерной техники.

3. Шелудяк Ю.Е., Кашпоров Л.Я. и др. Теплофизические свойства компонентов горючих систем.
4. Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.

Углерод против алюминия

АрхивПлатформа

автор : Сергей Озеров   05.05.2005

Термоинтерфейс процессора требует сегодня особого внимания. Читайте обзор нескольких термопаст, доступных на российском рынке, и одной графитовой прокладки.

Тепловое сопротивление современных воздушных кулеров очень невелико — 0,29–0,66 °C/Вт для полностью собранной системы «процессор — система теплосъема».

В переводе на более понятные цифры, это означает, что если рабочая температура процессора не должна превышать 65 °C, а температура окружающей среды — 25 °C, то эти кулеры могут нормально охлаждать процессоры, рассеивающие 140–60 Вт тепла соответственно (Честно говоря, очень интересно, какие боксовые кулеры будут прилагаться к будущим двуядерным процессорам Intel Smithfield с заявленным TDP 130 Вт: минимально оценка необходимого теплового сопротивления получается порядка 0,34 °C/Вт. Это требует либо использования тепловых трубок, либо самого совершенного цельномедного кулера, либо использования корпусов стандарта BTX с их громадными Thermal Modules).

Теплопроводность стали и других сплавов: меди, латуни и алюминия, теплопередача — Станок

Теплопроводность графита и меди

  • Теплопроводность: Алюминий 180-200 Вт/м*К
  • Медь обычная 300-320 Вт/м*К
  • Плотность: Рал=2700 кг/м3
  • Рмед=8940 кг/м3, где Р-плотность
  • Удельная теплоёмкость: Алюминий — 880 Дж / кг*К
  • Медь — 385 Дж / кг*К
  • видим, что: · плотность меди выше, чем у алюминия примерно в 3,31 раза · теплопроводность меди выше, чем у алюминия примерно в 1,66-1,75 раза
  • · теплоёмкость медного радиатора меньше, чем у алюминиевого примерно в 2,28 раза, при равной массе.

Таким образом, если радиаторы одинаковые по размерам и форме, то выполненный из меди будет в 3,31 раза тяжелее, его теплоемкость будет примерно в 1.44 раз больше чем у алюминиевого. Следовательно, при одинаковой нагрузке медный радиатор нагреется в 1.44 раза меньше. При большей разнице температур между процессорным ядром и радиатором теплообмен проходит эффективнее, следовательно, медный радиатор лучше. Но на практике, я заменил медный радиатор на алюминиевый и выиграл. Почему? В данном случае я заменил небольшой, но тяжелый радиатор от Thermaltake Volcano 10, с частыми тонкими ребрами, на вдвое больший радиатор от Titan D5TB/Cu35 с достаточно редкими и толстыми ребрами. Масса радиаторов примерно равна, поэтому теплоемкость алюминиевого радиатора будет больше. Следовательно, нагреваться он будет дольше. Кроме того, сопротивление воздушному потоку меньше из-за большей ширины каналов. Следовательно, через алюминиевый радиатор проходит большее количество воздуха, и он (воздух) забирает больше тепла. Тепловой баланс устанавливается на низшей отметке температуры, так как, во-первых, за единицу времени больше тепла отдается в атмосферу вследствие большего количества проходящего воздуха, а площадь теплообмена у обоих радиаторов примерно равна. А во-вторых, сам радиатор нагревается медленнее вследствие большей теплоемкости, поэтому для достижения равной с медным радиатором температуры алюминиевому требуется больше времени, что усугубляет первое положение. Кроме того, возможно в радиаторе от Thermaltake Volcano 10 образовывались не продуваемые зоны, в которых застаивался теплый воздух. Основное преимущество меди, большая теплопроводность, в данном случае существенного влияния не оказывает, ввиду слабого воздушного потока вследствие чего и алюминиевый и медный радиаторы успевают равномерно распределить тепло по поверхности своих ребер и, следовательно, единица площади ребер обоих радиаторов отдает воздуху примерно равное количество тепла.

Все, что здесь написано, отражает мою личную точку зрения и не более. Я не старался придерживаться классической терминологии и возможно применил неверные определения, за что прошу строго меня не судить.

Конструктивная критика принимается здесь.

отсюда

Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.

Образующие с медью твердые растворы

К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность.

К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1.

Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.

Не растворяющиеся в меди примеси

Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.

Примеси, образующие с медью хрупкие химические соединения

К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. Наличие серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.

ВВЕДЕНИЕ

Пружинные сплавы относятся к особой группе в основном металлических материалов, обладающих кроме обязательных для них высоких механических свойств, получаемых либо холодной пластической деформацией, либо методами дисперсионного упрочнения [1], еще и величиной сопротивления малым пластическим деформациям, или пределом упругости. Читать далее →

Температуропроводность металлов

В таблице представлены значения коэффициента температуропроводности чистых металлов в зависимости от температуры. Температуропроводность металлов указана в интервале температуры от -250 до 1600°С в размерности м 2 /с.

Рассмотрены следующие металлы: алюминий, кадмий, натрий, серебро, калий, никель, свинец, кобальт, бериллий, литий, сурьма, висмут, магний, цинк, вольфрам, олово, сурьма, железо, платина, золото, медь, родий, молибден, тантал, иридий.

Читать также:  Обезжириватель для кузова автомобиля

По значениям температуропроводности в таблице можно выделить металлы с наибольшим и наименьшим значением этого свойства.

Наименьшей температуропроводностью обладает такой металл, как висмут, его коэффициент температуропроводности при температуре 50°С равен 6,8 м 2 /с. Температуропроводность чистого серебра равна 158,3 м 2 /с при 100°С.

Этот металл имеет наиболее высокое значение этой характеристики.

Следует отметить, что по мере роста температуры металла, величина его температуропроводности уменьшается, за исключением платины и кобальта.

Теплопроводность и плотность алюминия

В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства алюминия даны в широком диапазоне температуры — от минус 223 до 1527°С (от 50 до 1800 К).

Как видно из таблицы, теплопроводность алюминия при комнатной температуре равна около 236 Вт/(м·град), что позволяет применять этот материал для изготовления радиаторов и различных теплоотводов.

Кроме алюминия, высокой теплопроводностью обладает также медь.

У какого металла теплопроводность больше? Известно, что теплопроводность алюминия при средних и высоких температурах все-таки меньше, чем у меди, однако, при охлаждении до 50К, теплопроводность алюминия существенно возрастает и достигает значения 1350 Вт/(м·град). У меди же при такой низкой температуре значение теплопроводности становится ниже, чем у алюминия и составляет 1250 Вт/(м·град).

Алюминий начинает плавиться при температуре 933,61 К (около 660°С), при этом некоторые его свойства претерпевают значительные изменения. Значения таких свойств, как температуропроводность, плотность алюминия и его теплопроводность значительно уменьшаются.

Плотность алюминия в основном определяется его температурой и имеет зависимость от агрегатного состояния этого металла.

Например, при температуре 27°С плотность алюминия равна 2697 кг/м 3 , а при нагревании этого металла до температуры плавления (660°С), его плотность становится равной 2368 кг/м 3 .

Снижение плотности алюминия с ростом температуры обусловлено его расширением при нагревании.

Теплопроводность латуни и бронзы

В таблице приведены значения теплопроводности латуни, бронзы, а также медно-никелевых сплавов (константана, копели, манганина и др.) в зависимости от температуры — в интервале от 4 до 1273 К.

Теплопроводность латуни, бронзы и других сплавов на основе меди при нагревании увеличивается. По данным таблицы, наибольшей теплопроводностью из рассмотренных сплавов при комнатной температуре обладает латунь Л96. Ее теплопроводность при температуре 300 К (27°С) равна 244 Вт/(м·град).

Читать также:  Устройство для пристрелки оружия

Также к медным сплавам с высокой теплопроводностью можно отнести: латунь ЛС59-1, томпак Л96 и Л90, томпак оловянистый ЛТО90-1, томпак прокатный РТ-90.

Кроме того, теплопроводность латуни в основном выше теплопроводности бронзы.

Следует отметить, что к бронзам с высокой теплопроводностью относятся: фосфористая, хромистая и бериллиевая бронзы, а также бронза БрА5.

Медным сплавом с наименьшей теплопроводностью является марганцовистая бронза — ее коэффициент теплопроводности при температуре 27°С равен 9,6 Вт/(м·град).

Теплопроводность сплавов алюминия

Теплопроводность алюминия — это технический параметр, характеризующий свойства металла и сплавы на его основе. Значение этого показателя учитывается при формировании составов для изготовления литейных, деформируемых изделий, промышленного производства деталей и установок.

Характеристики теплопроводности учитываются при использовании его в производстве.

Физические свойства алюминия

Химический элемент алюминий имеет кубическую кристаллическую структуру. Его удельный вес при 20 °C составляет 2,7 г/см³, температура плавления — +657…+660,2 °C, скрытая теплота плавления — 94,6 °C.

Алюминий высокой чистоты кипит при +1800…+2060 °C. При нагревании увеличивается показатель удельной теплоемкости металла, проводимость тепла и коэффициент линейного расширения.

Электропроводность алюминия возрастает с понижением температуры: при 189 °C составляет 156 ед., а при 400 °C — 12,5.

Среди химических элементов алюминий отличается высокой активностью. Он легко реагирует с кислородом, образуя плотную окисную пленку, предохраняющую металл от дальнейшего влияния среды.

Свойства сплавов определяются входящими в его состав элементами.

По мере повышения температуры в металле растворяется водород, повышающий пористость материала. Примеси щелочных химических элементов (калия, натрия, кальция), кремния, магния способствуют резкому увеличению пористости алюминия.

Добавки меди, ниобия, никеля, марганца, железа, хрома, ванадия, циркония создают однородную структуру при остывании расплавленного материала. Влияние лигатурных добавок других компонентов на физические свойства металла и его сплавы учитывается в технологии литья изделий.

Наличие дополнительных материалов изменяет показатель проводимости тепла состава и температуру плавления. Например, при обычных условиях формирования алюминиевых сплавов сера и ее соединения уходят в шлак, не оказывая вредного влияния на свойства состава.

Такое же воздействие имеют фосфор, углерод, азот. Они не изменяют механические свойства сплава. Для производства литейных изделий из-за пониженной прочности чистый алюминий применяется редко.

Коррозионная стойкость металла тем выше, чем ниже в нем содержание примесей железа и кремния. Но их наличие несколько повышает прочность материала, снижая при этом пластичность и электропроводность.

Технические характеристики некоторых сплавов на основе алюминия

По технологическим особенностям сплавы подразделяются на основные группы:

  • литейные — обладают повышенными литейными технологическими свойствами;
  • деформируемые — легко поддаются обработке под давлением.

Физические свойства углерода C (графита). Теплопроводность графита

Теплопроводность графита и меди

В таблице представлены физические свойства графита в интервале температуры от 20 до 800 °С.

Свойства указаны в направлении, как параллельно, так и перпендикулярно главной оси кристаллов графита.

Теплопроводность графита указана для следующих типов: кристаллический, естественный, прессованный искусственный. По данным таблицы видно, что теплопроводность графита при увеличении его температуры снижается.

Удельная (массовая) теплоемкость углерода при комнатной температуре составляет величину 710 Дж/(кг·град) и при нагревании увеличивается. Плотность углерода находится в диапазоне от 1400 до 1750 кг/м3.

Даны следующие физические свойства графита различной плотности:

  • теплопроводность графита, Вт/(м·град);
  • сопротивление разрыву, МН/м2;
  • модуль упругости графита, МН/м2;
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • удельное электрическое сопротивление, Ом·м;
  • коэффициент теплового линейного расширения (КТлР), 1/град.
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.