Волновой редуктор своими руками

Волновой редуктор своими руками

Волновой редуктор своими руками

Внешняя х&рапкер-‘сяика дб с. V’t.5 см 1 .Стрит.’

Он экономичен, у него эффективный малогабаритный глушитель шума кольцевого типа.

Оба варианта двигателя будут выпускаться как с постоянной футеровкой, так и с системой регулировки газа. В комплекте имеется воздушный винт.

Технические данные «Стрижа»

Технические данные «Стрижа»

Вариант с калильной свечой

Вес (с глушителем,

Вес (с глушителем, с

Рекомендуемые топливные смеси:

Намечен выпуск в 1975 году в тех же вариантах, что и «Сокол».

Двигатель «Стриж» устанавливается на всех видах авиа-, авто- и судомоделей, моделях-копиях аэросаней, глиссеров, подъемных кранов и игрушках. «Стриж» хорошо запускается. Он имеет очень мягкую внешнюю характеристику. Диапазон устойчивой работы двигателя 300-:-16 500 об/мни.

Волновой редуктор в моделях и игрушках

Волновой редуктор изобретен сравнительно недавно — в 1959 году. Несмотря на свою «молодость», он занял прочное место в различных областях техники. Без волнового редуктора уже немыслимы многие машины и механизмы. Редукторы с волновым зацеплением применяются в современных точных станках, приборах, отсчетных механизмах и даже в луноходе.

До недавних пор считалось нецелесообразным использование волнового редуктора в моделях и игрушках. Предполагалось, что волновой редуктор малых габаритов неэкономичен, а детали его требуют высокой точности изготовления.

Сегодня эта проблема уже решена. Простая конструкция, обыкновенные пластмассовые детали (их не более 6— 7 штук) — таков волновой редуктор, созданный в отделе новых изделий ЦКТБИ.

На рисунке приведен общий вид волновой передачи. Передача состоит из микродвигателя 1, на валу которого жестко закреплен ведущий ролик 2, находящийся во фрикционном зацеплении с роликами 3 (они называются генератором волн]. Генератор волн деформирует гибкую шестерню 4, зубья которой входят в зацепление с зубьями жесткой шестерни 5. Последняя одновременно является корпусом редуктора.

При вращении вала двигателя 1 с роликом 2 начинают вращаться ролики 3. Они вращаются вокруг своих осей и вокруг оси ролика 2, передавая волновую деформацию гибкой шестерне 4, последовательно вводя в зацепление с зубь-

Источник: zhurnalko.net

Волновой редуктор: принцип работы, устройство, назначение

С момента создания первой зубчатой передачи прошло много лет. Многие известные инженеры приложили немало усилий для усовершенствования этого процесса и изобретения новых механизмов. Одним из таких людей стал американский инженер У.

Массер, который в 1959 году изобрел волновой редуктор. Принцип работы был основан на использовании гибкого зубчатого колеса, передающего движение другой шестерне.

Это изобретение позволило ускорить развитие многих отраслей промышленности, увеличить передаточное число и точность оборудования.

Особенности конструкции

Устройство волнового редуктора зависит от сферы его применения. Основная цель, для которой используется этот механизм – преобразование входного вращательного движения двигателей в:

  • выходное поступательное;
  • выходное вращательное.

По своей конструкции они схожи с планетарными механизмами так как имеется несколько зон соприкосновения с гибким колесом. Обеспечивает одновременное соприкосновение кулачок.

Он имеет несколько выступов, которые образуют волны при вращении. При этом нагрузка распределена по всем зацепляемым зубьям равномерно.

При производстве волновых редукторов количество зубьев на колесах варьируется в пределах от 100 до 600.

Читать еще:  Вакуумный формовщик своими руками чертежи

Место, где вершина волны деформируемого элемента соприкасаются с другой шестерней, называется зоной зацепления.

По количеству таких зон редуктор с гибким элементом может быть:

Большее количество волн встречается крайне редко.

Принцип работы

Волновые редукторы имеют следующий принцип работы:

  1. Недеформируемое колесо с внутренними зубьями крепится в корпусе.
  2. Гибкое зубчатое колесо с тонкими стенками устанавливается на генератор волн.
  3. При вращении генератор волн деформирует гибкое колесо, тем самым перемещает точки соприкосновения наружной и внутренней шестерней.

Плавность хода обеспечивается тем, что на гибком колесе меньшее количество зубьев.

Типы волновых редукторов

Среди всего многообразия устройств данного вида. наибольшее распространение получили волновые мотор-редукторы. Конструкция такого механизма состоит из электродвигателя и непосредственно самой волновой передачи. Основные характеристики, на которые стоит обращать внимание перед покупкой:

  • размеры;
  • мощность;
  • КПД;
  • максимальная нагрузка.

Преимущества таких устройств перед моторами другого типа:

  • меньшие размеры;
  • низкий уровень шума и вибраций;
  • устойчивость к нагрузкам.

Основной способ смазки таких устройств заключается в стандартном подводе масла к соприкасающимся элементам. Тем не менее, в некоторых ситуациях требуются герметичные механизмы, без использования смазывающе-охлаждающей жидкости. Работа волнового редуктора фланцевого с пневмодвигателем происходит без смазки. В таком аппарате охлаждение элементов происходит при помощи сжатого воздуха.

Червячный волновой редуктор имеет два вида размещения червяка в корпусе – верхнюю и нижнюю. Применение такой механизм нашел в космической отрасли, где требуется герметичность.

Используется в конструкции космической лебедки.

Волновая зубчатая передача появилась относительно недавно, но уже успела зарекомендовать себя с положительной стороны. Она обеспечивает большую волновую деформацию, тем самым увеличивая передаточное отношение. Из достоинств также стоит выделить высокий КПД, небольшие размеры и маленький вес.

Применение волнового редуктора

За ряд особенностей, недоступных другим механизмам такого типа, привод с волновым редуктором получил широкое распространение во многих отраслях промышленности. Такое устройство встречается:

  • в космонавтике и авиастроении;
  • в судостроении и на подводных лодках;
  • в нефтедобывающей и нефтеперерабатывающей отрасли;
  • на химическом производстве;
  • в атомных электростанциях;
  • в робототехнике и автоматизированных системах;
  • при добыче полезных ископаемых.

Герметичность устройства позволяет использовать его в сложных климатических условиях, в вакууме и под водой. Устойчивость к большим нагрузкам и сложным условиям работы нашло применение для этих аппаратов в атомной энергетике и местах с возможностью взрывов и землетрясений.

Точность передаваемых движений позволяет использовать их в станках с числовым программным управлением.

Высокий запас прочности и длительный срок эксплуатации позволяет использовать редуктор в любом производстве, внедрить его в технологический процесс, задействовать в работе конвейера, автоматизированных систем и другом оборудовании.

Простая конструкция позволяет собрать такой механизм своими руками, но, если цели использования предполагают применение редуктора в сложном технологическом процессе, стоит приобрести профессиональное оборудование. Его стоимость окажется существенно выше, но производитель дает гарантию на оборудование и выполнение им всех поставленных задач.

Читать еще:  Лопата отвал для мотоблока своими руками чертежи

Волновые редукторы имеют множество преимуществ, за которые нашли повсеместное применение.

Они обладают высоким коэффициентом полезного действия, множеством вариантов передаточных чисел, небольшими размерами, высокой точностью и плавной работой движущихся элементов.

Высокая стоимость таких устройств в сравнении с другими редукторами, окупается в длительном сроке эксплуатации и недорогом обслуживании.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: stankiexpert.ru

Волновые редукторы российского производства компании Сервосила

Компания Сервосила наладила производство миниатюрных волновых редукторов, — впервые в современной России. Можно сказать, что с распадом Советского Союза технология производства волновых редукторов была утеряна.

Усилиями конструкторов и технологов компании Сервосила, российского производителя и экспортера робототехники, был восстановлен этот пробел.

Уже третий год компания Сервосила обеспечивает себя и своих партнеров миниатюрными волновыми редукторами .

Волновой редуктор — загадочная штука. Даже просто понять принцип его работы большинству людей удается не сразу. А в технологии его изготовления и методиках расчета скрыто множество подводных камней.

Компания Сервосила — это отечественный производитель мобильных роботов и сервоприводов. Волновые редукторы широко применяются в робототехнике , так как обеспечивают минимальную массу и минимальный люфт при заданном коэффициенте редукции.

Изначально Сервосила закупала волновые редукторы за рубежом, что негативно сказывалось на себестоимости продукции.

Благодаря освоению производства волновых редукторов, удалось не только снизить себестоимость, но и значительно улучшить компоновку и технологичность выпускаемой продукции, в том числе сервоприводов . Также волновые редукторы применяются в станкостроении и авиации.

Волновые редукторы отличает малая масса при заданном коэффициенте редукции, а также малый люфт. По сравнению с планетарными редукторами, выигрыш по массе может составлять 1.5-2 раза. Также волновые редукторы отличает компактность формы и малые размеры.

Малая масса и компактная форма важны во многих областях, таких как робототехника и авиация. У волновых редукторов также малый люфт, что очень важно в точных электромеханических системах, таких как сервоприводы манипуляторов роботов или систем позиционирования.

Источник: sdelanounas.ru

Волновые зубчатые передачи

Волновые зубчатые передачи создана в 1959 году У. Массером.

Принцип работы волновых передач ( для просмотра анимации нажмите на рисунок)

Структурно она схожа с планетарной, но принципиально отличается по способу передачи движения путем волнового деформирования зубчатого колеса.

Волновые зубчатые передачи, принцип работы

По конструкции такие передачи имеют различные вариации. Обязательными составляющими конструкции волновой зубчатой передачи служат:

  • жесткое зубчатое колесо (1) с внутренними зубьями;
  • тонкостенное гибкое зубчатое колесо (2) с наружными зубьями;
  • генератор волн или волнообразователь (Н);

Жесткое колесо неподвижно закрепляют в корпусе. Волнообразователь растягивает колесо (1) и заставляет его вращаться по внутреннему зацеплению жесткого колеса (2) в противоположном вращательному движению направлении.

Образование пар зацепления зубчатых колес осущетвояетсяв двух и более точках. Смещение гибкого колеса по отношению к жесткому происходит на определенное количество зубьев.

Разница количества зубьев этих колес равна количеству волн деформации.

Волновые зубчатые передачи, преимущества

  • большие передаточные числа (диапазон от 40 до 320);
  • высокий КПД (0.8 – 0.9);
  • высокий крутящий момент на выходе;
  • передача движения сквозь герметичную перегородку не требующая дополнительных уплотнений;
  • компактность и малогабаритность (в несколько раз меньше зубчатых передач);
  • высокая нагрузочная способность при небольших габаритах и массе;
  • плавность хода и низкий уровень шума во время работы;
  • много парность и многозонность зацепления обеспечивают малую кинематическую погрешность и высокую жесткость механизма;
  • малая вибрация и погрешности при изготовлении и монтаже;
  • высокая надежность и продолжительность срока службы (до 15 лет) из-за простоты, прочности и симметричности конструкции;
  • высокая износостойкость благодаря отсутствию трения скольжения;
  • минимальные затраты на техническое обслуживание (благодаря применению пластичной смазки контроль за уровнем смазки не требуется);
  • быстрый запуски торможение механизмов благодаря малой инерции и высокой динамичности.

Читать еще:  Шунт на 10 ампер своими руками

Волновые зубчатые передачи, область применения

Механизмы волновой передачи преобразуют входное вращательное движение в выходное вращательное или поступательное движение. Благодаря вышеописанным достоинствам волновые передачи очень широко применяются в сложных условиях различных областей науки и техники.

  • тяжело нагруженные, грузоподъемные и высокоэффективные силовые механизмы приводов редукторов и мультипликаторов (теплоэнергетическая, строительная, пищевая, медицинская промышленность);
  • запорная арматура магистральных нефтепроводов, нефтегазодобывающая и нефтеперерабатывающая промышленность;
  • тяжелые климатические условия (низкие температуры, высокая влажность воздуха, песчаные бури);
  • герметизированные полости глубокого вакуума или химически агрессивных или радиоактивных сред;
  • химическая и атомная промышленность;
  • авиационная, космическая и подводная техника;
  • следящие системы и системы автоматического управления высокой точности, робототехника.

Заказать волновые зубчатые передачи всех типоразмеров можно в НТЦ «Редуктор».

Для информации или оформления заказа позвоните по многоканальному номеру 8(812)777-8900 или заполните форму ниже.

Источник: reduktorntc.ru

Волновой редуктор с дисковым генератором волн

МГТУ им Баумана Кафедра Машиностроительные технологии Курсовой проект по курсу «Детали машин» Тема «Волновой редуктор с дисковым генератором волн»

Москва 2014

Источник: https://instrument16.ru/svoimi-rukami/volnovoj-reduktor-svoimi-rukami.html

Волновой редуктор: определение, описание, виды и принцип работы

Волновой редуктор своими руками

Волновой редуктор, или, как его еще называют, волновая передача, основывается на том, чтобы передавать вращательное движение, которое возникает за счет бегущей волновой деформации одного из зубчатых колес.

Волновые передачи

Появление и дальнейший процесс развития волновой передачи был осуществлен в далеком 1959 году. Изобретателем, а также человеком, который запатентовал эту технологию, стал американский инженер Массер.

Волновой редуктор состоит из нескольких основных элементов:

  • Неподвижное колесо, имеющее внутренние зубья.
  • Вращающееся колесо, имеющее наружные зубья.
  • Водило.

Среди преимуществ, которые можно выделить у этого способа передачи движения, – меньшая масса и размеры устройства, более высокая точность с кинематической точки зрения, а также меньший мертвый ход.

Если есть необходимость, то использовать такой тип передачи движения можно и в герметичном пространстве, не используя при этом уплотняющие сальники. Данный показатель наиболее важен для такой техники, как авиационная, космическая, подводная.

Кроме того, волновой редуктор применяется и в некоторых машинах, использующихся в отрасли химической промышленности.

Принцип работы редуктора

С кинематической точки зрения, волновые передачи – это разновидность планетарных передач, которая имеет одно гибкое и зубачатое колесо.

Принцип работы волнового редуктора заключается в следующем. Неподвижное колесо устройства крепится в нужном корпусе, а выполняется оно в виде простого зубчатого колеса, имеющего внутреннее зацепление.

Гибкое же зубчатое колесо выполняется в форме стакана, обладающего тонкой стенкой, легко поддающейся деформации. В более толстой части этого же колеса, то есть левой, нарезают зубья, в то время как правая часть выполняется в форме вала.

Самый простой элемент – это водило, которое состоит из овального кулачка и подшипника.

Само же движение осуществляется за счет того, что происходит деформация зубчатого венца гибкого колеса.

Конструкции редукторов

В настоящее время науке известно множество разнообразных конструкций для волнового редуктора. Чаще всего предназначение всех этих устройств – это преобразование входного вращательного движения в выходное вращательное или же выходное поступательное.

Также стоит отметить, что волновую передачу можно рассматривать, как разновидность многопоточного планетарного механизма. Это вполне возможно, так как эти механизмы обладают многозонным, а если брать в расчет зубчатый механизм, то еще и многопарным контактом между выходным звеном и гибким колесом механизма.

Можно отметить, что при номинальной нагрузке на волновой редуктор лишь от 15 до 20% всех зубьев устройства находится в зацеплении. Именно по этой причине во всех волновых передачах используют мелкомодульные механизмы, число зубьев на которых находится в переделах от 100 до 600.

Также можно добавить, что в зависимости от числа зон или же волн в устройстве они подразделяются на одноволновые, двухволновые и т.д.

Волновой мотор-редуктор

Описание данного типа волновой передачи можно сделать на основе мотора редуктора модели МВз2-160-5,5. Данная модель обладает сдвоенной волновой зубчатой передачей.

Конструкция данного редуктора состоит из гибкого колеса, которое выполнено в виде кольца с тонкими стенками и двумя зубчатыми венцами.

Кроме того, в конструкции имеется и общий для этих деталей кулачковый генератор волн, обладающий гибким подшипником.

Также у этой модели есть несколько особенностей, касающихся конструкции редуктора:

  1. Размер вдоль оси вала невелик.
  2. Генератор волн плавающего типа, а соединение с валом электродвигателя шарнирное.
  3. На конце выходного вала этого устройства располагаются прямобочные шлицы.

Этот тип мотора-редуктора может использоваться, как индивидуальный приводной модуль.

Технические параметры мотора-редуктора

Технические параметры для волнового мотора-редуктора – это несколько основных критериев:

  • Первый параметр, которому должен соответствовать редуктор – это крутящийся момент на выходном валу. Он должен составлять – 250 Н⋅м.
  • Второй параметр – это частота вращения вала редуктора. Показатель этого параметра должен быть – 5,5 мин-1.
  • Третий параметр для этого устройства – передаточное отношение. Показатель данного параметра – 264.
  • Коэффициент полезного действия волнового мотора-редуктора должен быть 0,7.
  • Параметры электродвигателя для этой модели следующие: 0,31 кВт мощности, Частота вращения 1450 мин-1, рабочее напряжение для этого механизма 220 В или 380 В.
  • Полный вес устройства составляет 20 кг.

Это основные параметры, которые предъявляются к волновому мотору-редуктору.

Зубчатая передача

Не так давно инженерами был создан новый вид зубчатой передачи, которая по своим параметрам, а также конструкции схожа с планетарной передачей, однако при этом обладает принципиально новой передачей вращения. Эти новые изобретения – волновые зубчатые редукторы.

Для того чтобы передавать вращательное движение в этих устройствах, была достигнута волновая бегущая деформация, которой поддается одно из зубчатых колес редуктора. Данное изобретение отлично зарекомендовало себя в некоторого вида следящих системах, а также в системах автоматического управления с высоким требованием к точности.

Такое специфическое предназначение эти редукторы получили из-за своих характеристик: небольшой физический вес, а также малые размеры всего устройства в целом, которое при этом обладает большим показателем передаточного отношения, характеризуется более высоким коэффициентом полезного действия, то есть КПД, небольшими люфтами, а также малым износом деталей редуктора. Именно эти параметры и стали решающими в определении цели работы для волновых зубчатых редукторов.

Лебедка с волновым редуктором

Волновые редукторы могут быть двух типов – зубчатые и червячные. Применение лебедки в данном устройстве нашло себя лишь при использовании редуктора червячного типа.

Также в волновых редукторах червячного типа с использованием лебедки существует два способа расположения червяка.

Нижняя установка, когда он находится под червячным колесом, а также верхняя, когда червяк располагается над этим же колесом.

Кроме того, привод с лебедкой может использоваться для установки на космическом корабле. Привод с лебедкой для космического корабля представляет собой двухступенчатый волновой редуктор.

Предназначение этого устройства на таких кораблях – это передача вращения в полностью герметичное пространство. Так как редуктор является двухступенчатым, то первая ступень – планетарная, а вторая – волновая передача.

Также стоит отметить, что есть возможность сделать устройство самотормозящим. Для этого необходимо заменить планетарную передачу в редукторе на червячную.

Расчеты редуктора

Как и для любой другой детали, для создания редуктора необходимо проводить определенные расчеты, которые будут показывать, способно ли устройство выполнять свои функции, а также из какого материала должно выполняться устройство и т.д.

Основным критерием для расчета волнового редуктора, его работоспособности, является прочность гибкого колеса. Оценить данный параметр можно при помощи сопротивления усталости зубчатого венца. Основной габаритный размер передачи – это внутренний диаметр гибкого колеса.

Определяется он по приближенной зависимости сопротивления усталости с учетом нормальных напряжений.

Источник: https://FB.ru/article/334836/volnovoy-reduktor-opredelenie-opisanie-vidyi-i-printsip-rabotyi

Волновой редуктор: принцип работы, устройство, назначение

Волновой редуктор своими руками

С момента создания первой зубчатой передачи прошло много лет. Многие известные инженеры приложили немало усилий для усовершенствования этого процесса и изобретения новых механизмов. Одним из таких людей стал американский инженер У.

Массер, который в 1959 году изобрел волновой редуктор. Принцип работы был основан на использовании гибкого зубчатого колеса, передающего движение другой шестерне.

Это изобретение позволило ускорить развитие многих отраслей промышленности, увеличить передаточное число и точность оборудования.

Волновой редуктор своими руками – Справочник металлиста

Волновой редуктор своими руками

Владельцы домашних мастерских имеют много приспособлений и устройств, которые значительно облегчают ручной труд и повышают эффективность работы. Одним из таких механизмов является понижающий редуктор.

В основном он используется для того, чтобы скорость вращения выходного вала изменялась в меньшую сторону или повышался на нем крутящий момент. По своей конструкции это устройство может быть комбинированным, червячным или шестеренным, а также одно- и многоступенчатым.

Понижающий редуктор многие изготавливают своими руками.

Что такое редуктор?

Этот механизм представляет собой передаточное звено, которое располагается между вращательными устройствами электродвигателя или двигателя внутреннего сгорания к конечному рабочему агрегату.

Основными характеризующими показателями редуктора являются:

  • передаваемая мощность;
  • КПД;
  • количество ведущих и ведомых вращательных валов.

К вращательным устройствам этого механизма неподвижно закрепляют зубчатые или червячные передачи, которые передают и регулируют движение от одного к другому. В корпусе имеются отверстия с подшипниками, на которых располагаются валы.

Необходимые материалы и инструменты

Чтобы изготовить редуктор могут потребоваться следующие материалы и инструменты:

  • гаечные ключи и отвертки разнообразных форм и размеров;
  • надфили, сверла;
  • прокладки из резины;
  • шайбы, обрезки труб, шестерни, болты, подшипники, шкивы, валы;
  • инвертор;
  • штангенциркуль, линейка;
  • плоскогубцы;
  • тиски, молоток;
  • каркас от старого редуктора или стальные листы.

Как сделать редуктор своими руками?

Самой важной деталью понижающего редуктора считается его корпус. Он должен быть спроектирован и изготовлен правильно своими руками, так как от этого зависит взаимное положение валов и осей, соосность гнезд под опорные подшипники и зазоры между шестернями.

Корпусы промышленных редукторов изготавливают в основном методом литья из алюминиевых сплавов или чугуна, однако, в домашних условиях сделать это совершенно невозможно.

Поэтому под свои нужды можно подобрать или доделать уже готовый корпус либо сварить из стального листа.

Только в этом случае следует помнить, что в процессе сварки металл может «повести», и поэтому для сохранения соосности валов необходимо оставлять припуск.

Многие мастера делают по-другому.

Чтобы не заморачиваться с расточными работами, они корпус начинают сваривать полностью, а вместо гнезд для опорных подшипников применяют отрезки трубы, которые выставляют в необходимом положении и только после этого окончательно закрепляют на месте при помощи сварки или болтами. Для облегчения обслуживания редуктора необходимо у корпуса сделать съемной верхнюю крышку, а снизу — сливное отверстие, которое будет использоваться для стока отработанного масла.

Опорой для шестеренок служат оси и валы редуктора. Обычно в одноступенчатом механизме используют только валы, имеющих жесткое крепление шестерен. Обе шестеренки в этом случае вращаются вместе со своими валами. Ось используют тогда, когда в редуктор необходимо вставить промежуточную шестеренку.

Она начинает свободно вращаться на своей оси с минимальным зазором, а чтобы не смещалась вбок, ее фиксируют гайкой, упорным буртиком или стопорными разрезными шайбами.

Валы следует изготавливать из стали, обладающей хорошей прочностью и замечательно поддающейся механической обработке.

Опорами для валов служат подшипники в редукторе. Они воспринимают нагрузки, возникающие в процессе работы механизма. Надежность и работоспособность редуктора целиком зависит от того, насколько правильно были подобраны подшипники.

Для механизма своими руками лучше всего подобрать подшипники закрытого типа, для которых требуется минимальное обслуживание. Они смазываются консистентной смазкой. Тип подшипников напрямую зависит от вида нагрузки.

При использовании прямозубых шестерен будет достаточно обыкновенных одно- или двухрядных шариковых подшипников.

Если в механизме присутствуют косозубые шестерни или червячные передачи, то на вал и подшипники начинает передаваться осевая нагрузка, что требует наличия шарикового или роликового радиально-упорного подшипника.

Другой довольно важной деталью редуктора являются шестерни. Благодаря им можно изменять частоту вращения выходного вала. Чтобы изготовить шестерни, необходимо специальное металлорежущее оборудование, поэтому для экономии можно использовать готовые детали со списанных устройств.

Очень важно в процессе монтажа шестерен выставить правильно зазор между ними, потому что от этого зависит уровень шума, возникающего во время работы редуктора и нагрузочная способность.

Смазывать шестерни лучше всего жидким индустриальным маслом, которое заливают таким образом, чтобы оно покрыло зубья нижней шестерни.

Смазка остальных деталей осуществляется при помощи разбрызгивания масла по внутренней полости механизма.

Чтобы предотвратить аварийное разрушение деталей механизма от больших нагрузок используют предохранительную муфту. Она бывает в виде сильфона, подпружиненных фрикционных дисков или срезаемого штифта.

Процесс монтажа очень сильно облегчают крышки подшипников, которые бывают сквозными или глухими. Подбирают их из готовых деталей или вытачивают на токарном станке.

Сфера применения редуктора

Этот механизм является незаменимым помощников в различных сферах деятельности человека. Обычно он применяется:

  • в промышленности;
  • в автомобильных коробках передач;
  • в электрооборудовании и бытовой техники;
  • в газодобывающей промышленности и многих других отраслях.

В промышленности этот механизм используется очень широко. В различных обрабатывающих станках он применяется как вращательная передающая деталь, повышающая скорость оборотов.

А вот в автомобильных коробках передач редуктор, наоборот, понижает частоту вращения двигателя. От того, насколько правильно отлажена его регулировка, зависит плавность и мягкость хода транспорта.

Это понижающее обороты устройство используется также в бытовой технике и электрооборудовании, имеющих электродвигатели. Это могут быть миксеры, стиральные машины, дрели, кухонные комбайны, болгарки.

Редукторы являются незаменимой частью вентиляционного оборудования, очистных сооружений, насосных систем. Они способствуют поддержанию оптимального давления газа в газопламенных установках.

Газодобывающая промышленность также не может обойтись без этого механизма. Транспортировка и хранение газов является довольно опасным процессом, поэтому используют редуктор, с помощью которого перекрывают доступ газа или открывают ему выход, регулируя напор.

Сборка редуктора своими руками из подручных средств – дело довольно хлопотное, но не слишком трудное.

С его помощью уменьшается вращение выходного вала и увеличивается его крутящий момент. Производительность устройств или машины полностью зависит от этой детали.

Используется этот механизм в самых разнообразных отраслях деятельности человека.

  • Фёдор Ильич Артёмов
  • Распечатать

Источник: https://ssk2121.com/volnovoy-reduktor-svoimi-rukami/

Волновой редуктор принцип работы – Станки, сварка, металлообработка

Волновой редуктор своими руками



Волновой называют передачу, в которой вращение передается за счет волны деформации упругого гибкого звена. Основное применение имеют зубчатые волновые передачи с механическими передачами волн и цилиндрическими колесами.

Кроме зубчатых, бывают еще волновые передачи с промежуточными телами качения, в которых тела качения подшипника принимают непосредственное участие в передаче движения, а также фрикционные волновые передачи.

Волновая передача была изобретена относительно недавно – в 1959 году американским инженером У. Массером.

Волновая передача (рис. 1) состоит из трех кинематических звеньев: вращающегося гибкого колеса 1 с наружными зубьями, неподвижного жесткого колеса 2 с внутренними зубьями и вращающегося генератора волн Н.

Гибкое колесо выполняют в виде упругого тонкостенного цилиндра, на кольцевом утолщении (венце) которого нарезаны эвольвентные зубья. Длина цилиндра близка к его диаметру. Гибкое колесо соединяют с тихоходным валом передачи.

Жесткое колесо – обычное зубчатое колесо – соединено с корпусом. Число зубьев z2 жесткого колеса больше числа зубьев z1 гибкого колеса.

Генератор волн, представляющий собой водило, состоит из овального кулачка и напрессованного на него специального гибкого шарикоподшипника. При сборке деформированное гибкое колесо вставляют в генератор волн, придающий колесу овальную форму, и вводят в зацепление с жестким колесом.

Гибкое колесо деформируется так, что на концах большой оси овала зубья его зацепляются с зубьями жесткого колеса на полную рабочую высоту, образуя две зоны зацепления (рис. 1). На малой оси зубья колес не зацепляются, их вершины расположены друг напротив друга. Между этими участками зацепление частичное. Как видно из рис.

1, волновая передача может обеспечить одновременное зацепление большого числа зубьев.

При вращении каждая точка венца гибкого колеса имеет радиальную деформацию: по большой оси овала удаляясь от центра, по малой – приближаясь к нему. Совокупность всех перемещений на угле π радиан образует волну деформаций, а на угле 2π – две волны. Такую передачу называют двухволновой.

При вращении генератора волна деформации бежит по окружности гибкого зубчатого венца; при этом венец обкатывается по неподвижному жесткому колесу в сторону, обратную вращению генератора, вращая выходной вал (см. стрелки на рис. 1).

Принцип работы волновой зубчатой передачи наглядно показан на небольшом видеоролике внизу страницы.

В волновой передаче, как и в планетарной, неподвижным может быть любое звено.

Например, для передачи движения через герметичную стенку в химической, авиационной, космической, атомной и других отраслях техники применяют волновую передачу с неподвижным гибким колесом (рис. 2).

Здесь гибкий зубчатый венец расположен в середине глухого стакана 1, герметично соединенного с корпусом. Движение передается от генератора волн Н к жесткому колесу 2, соединенному с выходным валом.

***

Достоинства и недостатки волновых передач

К достоинствам волновых передач можно отнести следующие их свойства:

  • способность передавать большие нагрузки при малых габаритах и массе, поскольку в зацеплении одновременно находится до трети всех зубьев;
  • возможность передачи движения в герметизированное пространство без применения дополнительных уплотнений;
  • возможность получения большого передаточного числа при сравнительно высоком КПД. Так, для одноступенчатой передачи с передаточным числом u ≤ 320 КПД составляет η = 0,8…0,9, что выше, чем у червячных передач с такими же параметрами;
  • малая кинематическая погрешность вследствие двухзонности и многопарности зацепления;
  • небольшие нагрузки на валы и опоры вследствие симметричности конструкции;
  • относительно низкий уровень шума и плавность хода во время работы.

Недостатки волновых передач:

  • сложность изготовления гибкого колеса и генератора;
  • ограничение частоты вращения вала генератора при больших диаметрах колес (во избежание больших окружных скоростей в ободе генератора);
  • высокая напряжённость основных элементов гибкого колеса и генератора волн;
  • появление вибрации при работе передачи.

***

Область применения волновых передач

Волновые передачи применяют в промышленных роботах и манипуляторах, в механизмах с большим передаточным числом, а также в устройствах с повышенными требованиями к кинематической точности и герметичности.

Широко применяются волновые передачи в авиационной и космической технике, в приводах грузоподъёмных машин, станков, конвейеров и др.

Существуют герметичные волновые передачи, передающие вращение в объем с химически агрессивной или радиоактивной средой, а также работающие в глубоком вакууме.

***

Гибкое колесо волновой передачи

Гибкое колесо (рис. 3) выполняют в виде тонкостенного стакана с гибким дном и фланцем для присоединения к валу (исполнение I) или с шлицевым присоединением к валу (исполнение II).

Шлицевое соединение, обеспечивая осевую подвижность, уменьшает напряжения в гибком колесе.

Осевая податливость в варианте I обеспечивается тонким дном (этому способствуют отверстия в дне и минимально необходимые для присоединения к валу размеры фланца d0). Применяют также сварные соединения цилиндра с гибким дном.

Чтобы избежать задевания вершин зубьев колес (интерференции) при входе в зацепление под нагрузкой, в большинстве случаев зубья гибкого колеса нарезают с уменьшенной высотой ножки. При этом получаются зубья с широкой впадиной, что повышает гибкость обода колеса, уменьшает напряжения в нем, увеличивает число пар зубьев в зацеплении.

Зубья гибкого колеса с широкой впадиной имеют высоту h = 1,35m, где m – 0,15…0,25 мм – модуль зацепления.

Размеры гибкого колеса d, df, da1, b1 и S1 определяют расчетом, другие назначают по рекомендациям:

S2 = (0,7…0,9)S1;      а = (0,15…0,25)b1;      d0 = (0,5…0,6)d;      l = (0,6…0,8)d;      b2 = (0,3…0,5)b1.

Буртик а уменьшает концентрацию напряжений в торце колеса.

Материалом для гибких колес служат стали марок 30ХГСА, 40Х13, 40ХНМА. Для волновых редукторов общего назначения чаще других применяют сталь марки 30ХГСА с термообработкой улучшения (Н = 280…320 НВ), а зубчатый венец подвергают дробеструйному наклепу.

Жесткое колесо волновой передачи

Жесткое колесо волновых передач по конструкции подобно колесам с внутренним зацеплением обычных и планетарных передач. Жесткое колесо характеризуется менее высоким напряженным состоянием, чем гибкое колесо. Изготавливают жесткие колеса волновых передач из обычных конструкционных сталей.

Волновой генератор

Волновые генераторы воспринимают большие нагрузки выходного звена, при этом они вращаются с высокой скоростью входного звена.

Генераторы волн бывают механическими, гидравлическими, пневматическими и электромагнитными. Механические генераторы могут быть двухроликовыми, четырехроликовыми, дисковыми, кольцевыми и кулачковыми.

Генератор волн может располагаться внутри или вне гибкого колеса. Число волн может быть любым.

Кулачковый волновой генератор (рис. 1) состоит из овального кулачка и напрессованного на него гибкого подшипника качения. Профиль кулачка выполняют эквидистантным к принятой форме деформирования гибкого колеса.

Источник: https://stanki-info.com/volnovoy-reduktor-printsip-raboty/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.