Взаимодействует ли медь с водой

Взаимодействует ли медь с водой — Справочник металлиста

Взаимодействует ли медь с водой

В основе химических свойств большинства элементов лежит их способность к растворению в водной среде и кислотах. Изучение характеристики меди связано с малоактивным действием в обычных условиях.

Особенностью её химических процессов является образование соединений с аммиаком, ртутью, азотной и серной кислотами. Низкая растворимость меди в воде не способна вызвать коррозионные процессы.

Ей присущи особые химические свойства, позволяющие использовать соединение в разных отраслях промышленности.

Описание элемента

Медь считается старейшим из металлов, который научились добывать люди ещё до нашей эры. Это вещество получают из природных источников в виде руды. Медью называют элемент химической таблицы с латинским наименованием cuprum, порядковый номер которого равен 29. В периодической системе он расположен в четвёртом периоде и относится к первой группе.

Природное вещество является розово-красным тяжёлым металлом с мягкой и ковкой структурой. Температура его кипения и плавления – более 1000 °С. Считается хорошим проводником.

Химическое строение и свойства

Если изучить электронную формулу медного атома, то можно обнаружить, что у него имеется 4 уровня. На валентной 4s-орбитали находится всего один электрон. Во время химических реакций от атома может отщепляться от 1 до 3 отрицательно заряжённых частиц, тогда получаются соединения меди со степенью окисления +3, +2, +1. Наибольшей устойчивостью обладают её двухвалентные производные.

В химических реакциях она выступает в качестве малоактивного металла. В обычных условиях растворимость меди в воде отсутствует. В сухом воздухе не наблюдается коррозия, зато при нагревании поверхность металла покрывается чёрным налётом из оксида двухвалентного.

Химическая устойчивость меди проявляется при действии безводных газов, углерода, ряда органических соединений, фенольных смол и спиртов. Для неё характерны реакции комплексообразования с выделением окрашенных соединений.

Медь обладает небольшим сходством с металлами щелочной группы, связанным с формированием производных одновалентного ряда.

Это процесс образования однородных систем в виде растворов при взаимодействии одного соединения с другими веществами. Их составляющими являются отдельные молекулы, атомы, ионы и другие частицы. Степень растворимости определяется по концентрации вещества, которое растворили при получении насыщенного раствора.

Единицей измерения чаще всего являются проценты, объёмные или весовые доли. Растворимость меди в воде, как и других соединений твёрдого вида, подчиняется лишь изменениям температурных условий. Эту зависимость выражают с помощью кривых. Если показатель очень маленький, то вещество считается нерастворимым.

Растворимость меди в водной среде

Металл проявляет коррозионную стойкость под действием морской воды. Это доказывает его инертность в обычных условиях. Растворимость меди в воде (пресной) практически не наблюдается. Зато во влажной среде и под действием углекислого газа на металлической поверхности происходит образование плёнки зелёного цвета, которая является основным карбонатом:

Cu + Cu + O2 + H2O + CO2 → Cu(OH)2 · CuCO2.

Если рассматривать её одновалентные соединения в виде соли, то наблюдается их незначительное растворение. Такие вещества подвержены быстрому окислению. В результате получаются соединения меди двухвалентные. Эти соли обладают хорошей растворимостью в водной среде. Происходит их полная диссоциация на ионы.

Растворимость в кислотах

Обычные условия протекания реакций меди со слабыми или разбавленными кислотами не способствуют их взаимодействию. Не наблюдается химический процесс металла со щелочами. Растворимость меди в кислотах возможна, если они являются сильными окислителями. Только в этом случае протекает взаимодействие.

Растворимость меди в азотной кислоте

Такая реакция возможна ввиду того, что происходит процесс окисления металла сильным реагентом. Кислота азотная в разбавленном и концентрированном виде проявляет окислительные свойства с растворением меди.

В первом варианте во время реакции получается меди нитрат и азота двухвалентный оксид в соотношении 75 % к 25 %. Процесс с разбавленной кислотой азотной можно описать следующим уравнением:

8HNO3 + 3Cu → 3Cu(NO3)2 + NO + NO + 4H2O.

Во втором случае получается меди нитрат и азота оксиды двухвалентные и четырёхвалентные, соотношение которых 1 к 1. В этом процессе участвует 1 моль металла и 3 моля кислоты азотной концентрированной. При растворении меди происходит сильный разогрев раствора, в результате чего наблюдается термическое разложение окислителя и выделение дополнительного объёма азотных оксидов:

4HNO3 + Cu → Cu(NO3)2 + NO2 + NO2 + 2H2O.

Реакцию используют в малотоннажном производстве, связанном с переработкой лома или удалением покрытия с отходов. Однако такой способ растворения меди имеет ряд недостатков, связанных с выделением большого количества азотных оксидов. Для их улавливания или нейтрализации необходимо специальное оборудование. Процессы эти весьма затратные.

Растворение меди считается завершённым, когда происходит полное прекращение выработки летучих азотистых оксидов. Температура реакции колеблется от 60 до 70 °C. Следующим этапом является спуск раствора из химического реактора. На его дне остаются небольшие куски металла, который не прореагировал. К полученной жидкости добавляют воду и проводят фильтрацию.

Растворимость в кислоте серной

В обычном состоянии такая реакция не протекает. Фактором, определяющим растворение меди в серной кислоте, является её сильная концентрация. Разбавленная среда не может окислить металл. Растворение меди в серной кислоте концентрированной протекает с выделением сульфата.

Процесс выражается следующим уравнением:

Cu + H2SO4 + H2SO4 → CuSO4 + 2H2O + SO2.

Свойства сульфата меди

Соль двухосновную ещё называют сернокислой, обозначают её так: CuSO4. Она представляет собой вещество без характерного запаха, не проявляющее летучесть.

В безводной форме соль не имеет цвета, она непрозрачная, обладающая высокой гигроскопичностью. У меди (сульфат) растворимость хорошая. Молекулы воды, присоединяясь к соли, могут образовывать кристаллогидратные соединения.

Примером служит купорос медный, который является пентагидратом голубого цвета. Его формула: CuSO4·5H2O.

Кристаллогидратам присуща прозрачная структура синеватого оттенка, они проявляют горьковатый, металлический привкус. Молекулы их способны со временем терять связанную воду. В природе встречаются в виде минералов, к которым относят халькантит и бутит.

Взаимодействует ли медь с водой

Взаимодействует ли медь с водой

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.

Медь обладает высокой тепло- и электропроводностью.

Имеет два стабильных изотопа — Cu и Cu, и несколько радиоактивных изотопов.

Самый долгоживущий из них, Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

Химические свойства

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой.

Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия.

Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

На влажном воздухе медь окисляется, образуя основный карбонат меди:

Реагирует с концентрированной холодной серной кислотой:

С концентрированной горячей серной кислотой:

С безводной серной кислотой при 200 °C:

C разбавленной серной кислотой при нагревании в присутствии кислорода воздуха:

Реагирует с концентрированной азотной кислотой:

С разбавленной азотной кислотой:

С царской водкой:

C разбавленной хлороводородной кислотой в присутствии кислорода:

С газообразным хлороводородом при 500—600 °C:

С бромоводородом:

Также медь реагирует с концентрированной уксусной кислотой в присутствии кислорода:

Медь растворяется в концентрированном гидроксиде аммония, с образованием аммиакатов:

Окисляется до оксида меди при недостатке кислорода и 200 °C и до оксида меди, при избытке кислорода и температурах порядка 400—500 °C:

Медный порошок реагирует с хлором, серой и бромом, при комнатной температуре:

При 300—400 °C реагирует с серой и селеном:

C оксидами неметаллов:

Медь реагирует с цианидом калия с образованием дицианокупрата калия, щелочи и водорода:

С концентрированной соляной кислотой и хлоратом калия:

Соединения

Медный купорос

В соединениях медь бывает двух степеней окисления: менее стабильную степень Cu и намного более стабильную Cu, которая даёт соли синего и сине-зелёного цвета.

В необычных условиях можно получить соединения со степенью окисления +3 и даже +5. Последняя встречается в солях купраборанового аниона Cu2, полученных в 1994 году.

Карбонат меди имеет зелёную окраску, что является причиной позеленения элементов зданий, памятников и изделий из меди.

Сульфат меди при гидратации даёт синие кристаллы медного купороса CuSO4∙5H2O, используется как фунгицид.

Также существует нестабильный сульфат меди Существует два стабильных оксида меди — оксид меди Cu2O и оксид меди CuO.

Оксиды меди используются для получения оксида иттрия бария меди, который является основой для получения сверхпроводников. Хлорид меди — бесцветные кристаллы плотностью 4,11 г/см³.

В сухом состоянии устойчив. В присутствии влаги легко окисляется кислородом воздуха, приобретая сине-зелёную окраску. Может быть синтезирован восстановлением хлорида меди сульфитом натрия в водном растворе.

Соединения меди

Многие соединения меди имеют белую окраску либо бесцветны.

Это объясняется тем, что в ионе меди все пять Зd-орбиталей заполнены парами электронов. Однако оксид Cu2O имеет красновато-коричневую окраску.

Ионы меди в водном растворе неустойчивы и легко подвергаются диспропорционированию:

2Cu → Cu + Cu

В то же время медь встречается в форме соединений, которые не растворяются в воде, либо в составе комплексов. Например, дихлорокупрат-ион устойчив. Его можно получить, добавляя концентрированную соляную кислоту к хлориду меди:

CuCl + Cl →

Хлорид меди — белое нерастворимое твёрдое вещество. Как и другие галогениды меди, он имеет ковалентный характер и более устойчив, чем галогенид меди. Хлорид меди можно получить при сильном нагревании хлорида меди:

2CuCl2 → 2CuCl + Cl2

Ионы меди окрашивают пламя в зелёный цвет

Образует неустойчивый комплекс с CO

CuCl+CO → CuCl разлагающийся при нагревании

Другой способ его получения заключается в кипячении смеси хлорида меди с медью в концентрированной соляной кислоте.

В этом случае сначала образуется промежуточное соединение — комплексный дихлорокупрат-ион.

Хлорид меди реагирует с концентрированным раствором аммиака, образуя комплекс диамминмеди. Этот комплекс не имеет окраски в отсутствие кислорода, но в результате реакции с кислородом превращается в синее соединение.

Соединения меди и меди

Степени окисления III и IV являются малоустойчивыми степенями окисления и представлены только соединениями с кислородом, фтором или в виде комплексов.

Аналитическая химия меди

  • Традиционно количественное выделение меди из слабокислых растворов проводилось с помощью сероводорода.
  • В растворах, при отсутствии мешающих ионов медь может быть определена комплексонометрически или потенциометрически, ионометрически.
  • Микроколичества меди в растворах определяют кинетическими методами.

Основания. Химические свойства и получение

Взаимодействует ли медь с водой

Перед изучением этого раздела рекомендую прочитать следующую статью:

Классификация неорганических веществ

Основания – сложные вещества, которые состоят из катиона металла Ме+ (или металлоподобного катиона, например, иона аммония NH4+) и гидроксид-аниона ОН—.

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания. Также есть неустойчивые основания, которые самопроизвольно разлагаются.

Получение оснований

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например, оксид натрия в воде образует гидроксид натрия (едкий натр):

Na2O + H2O → 2NaOH

При этом оксид меди (II)  с водойне реагирует:

CuO + H2O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий), кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например, калий реагирует с водой очень бурно:

2K0 + 2H2+O →  2K+OH + H20

3. Электролиз растворов некоторых солей щелочных металлов. Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например, электролиз хлорида натрия:

2NaCl + 2H2O → 2NaOH + H2↑ + Cl2↑

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

щелочь + соль1 = соль2↓ + щелочь

либо

щелочь + соль1 = соль2↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II):

CuCl2 + 2NaOH → Cu(OH)2↓ + 2NaCl

Химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами  (и некоторыми средними кислотами). При этом образуются соль и вода.

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например, гидроксид меди (II) взаимодействует с сильной соляной кислотой:

 Cu(OH)2 + 2HCl = CuCl2 + 2H2O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH)2 + CO2 ≠

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например, гидроксид железа (III) разлагается на оксид железа (III)  и воду при прокаливании:

2Fe(OH)3 = Fe2O3 + 3H2O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид  ≠

нерастворимое основание + амфотерный гидроксид  ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей. Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления, которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например, гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe+2(OH)2 + O20 + 2H2O → 4Fe+3(O-2H)3

Химические свойства щелочей

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми. При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации.

 Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты.

В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например, гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при  мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H3PO4  → NaH2PO4 + H2O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H3PO4 → Na2HPO4 + 2H2O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H3PO4 → Na3PO4 + 3H2O

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли, а в растворе – комплексные соли.

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например, при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH)3 = NaAlO2 + 2H2O

А в растворе образуется комплексная соль:

NaOH + Al(OH)3 = Na[Al(OH)4]

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (как правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы.

Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион.

Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли, в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь(избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид(избыток) = кислая соль

Например, при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO2 = Na2CO3 + H2O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO2 = NaHCO3 

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе, при условии, что в продуктах образуется газ или  осадок. Такие реакции протекают по механизму ионного обмена.

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например, гидроксид натрия взаимодействует с сульфатом меди в растворе:

Cu2+SO42- + 2Na+OH— = Cu2+(OH)2—↓ + Na2+SO42-

Также щёлочи взаимодействуют с растворами солей аммония.

Например, гидроксид калия взаимодействует с раствором нитрата аммония:

NH4+NO3— + K+OH— = K+NO3— + NH3↑ + H2O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль !

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид, взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла.

Например, избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO4 + 2KOH = Zn(OH)2↓ + K2SO4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид. А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей. Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO4 + 4KOH = K2[Zn(OH)4] + K2SO4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла(избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь(избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например, гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO3 + KOH = K2SO3 + H2O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO3 мы разбиваем на уольную кислоту H2CO3 и карбонат натрия Na2CO3. Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например, железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H2+O = 2Na[Al+3(OH)4] + 3H20

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2 ≠

NaOH +N2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например, хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl20 = NaCl— + NaOCl+ + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl20 = 5NaCl— + NaCl+5O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например, в растворе:

2NaOH +Si0 + H2+O= NaCl— + Na2Si+4O3 + 2H20

Фтор окисляет щёлочи:

2F20 + 4NaO-2H = O20 + 4NaF— + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

Реагирует ли медь с водой — Металлы, оборудование, инструкции

Взаимодействует ли медь с водой

[Deposit Photos]

Медь — старейший металл, используемый людьми с давних времен. Медь имеет латинское название — cuprum. Ее порядковый номер — 29. В периодической системе Менделеева медь расположена в четвертом периоде, в первой группе.

Физические и химические свойства меди

Медь — это тяжелый металл розово-красного цвета с ковкой и мягкой структурой. Температура кипения меди — более 1000 °С. Сuprum — хороший электро- и теплопроводник, плавится при 1084 °С, плотность металла — 8,9 г/см³, в природе встречается в самородном виде.

Атом меди имеет 4 уровня. На валентной 4s-орбитали расположен один электрон. Во время химического взаимодействия с другими веществами от атома отщепляется 1—3 отрицательно заряженные частицы, в результате чего образуются соединения меди со степенью окисления «+3», «+2», «+1». Максимальной устойчивостью обладают двухвалентные производные меди.

[Deposit Photos]

Медь обладает низкой реакционной способностью. Существует две основные степени окисления металла, проявляющиеся в соединениях: «+1» и «+2». Вещества, в которых данные значения заменяются на «+3», встречаются редко.

Медь взаимодействует с углекислым газом, воздухом, соляной кислотой и другими соединениями при очень высоких температурах.

На поверхности металла образуется защитная оксидная пленка, которая предохраняет медь от дальнейшего окисления и делает металл стабильным и малоактивным.

Медь взаимодействует с простыми веществами: галогенами, селеном, серой. Металл способен формировать двойные соли или комплексные соединения. Почти все сложные соединения этого химического элемента (кроме оксидов) — это ядовитые вещества. Вещества, которые образовала одновалентная медь, легко окисляются до двухвалентных аналогов.

В химических реакциях медь выступает в качестве малоактивного металла. Металл не растворяется в воде в обычных условиях. В сухом воздухе не протекает коррозия металла, но при нагревании медь покрывается черным оксидным налетом.

Химическая устойчивость элемента проявляется при действии углерода, безводных газов, нескольких органических соединений, спиртов и фенольных смол. Для меди характерны реакции комплексообразования, в результате которых выделяются окрашенные соединения.

Медь имеет сходства с металлами щелочной группы, связанные с формированием производных одновалентного ряда.

Взаимодействие с азотной кислотой

Медь растворяется в азотной кислоте. Эта реакция осуществляется из-за окисления металла сильным реагентом. Азотная кислота (разбавленная и концентрированная), проявляет окислительные свойства с растворением меди.

Молекула азотной кислоты [Deposit Photos]

При реакции металла с разбавленной кислотой образуется нитрат меди и двухвалентный оксид азота в соотношении 75%:25%. Уравнение реакции:

8H­NO₃ + 3Cu → 3Cu(NO₃)₂ + 2NO + 4H₂O

В реакции участвует 1 моль меди и 3 моля концентрированной азотной кислоты. При растворении меди раствор сильно разогревается, в результате чего происходит термическое разложение окислителя и наблюдается выделение дополнительного объема азотных оксидов. Уравнение реакции:

4H­NO₃ + Cu → Cu(NO₃) + 2NO₂ + 2H₂O

Такой способ растворения меди имеет недостаток: во время реакции меди с азотной кислотой происходит выделение большого количества азотных оксидов. Для улавливания (или нейтрализации) азотных оксидов требуется специальное оборудование, потому процесс этот слишком затратный.

Растворение меди в азотной кислоте считается завершенным, когда полностью прекращается выработка летучих азотистых оксидов. Температура реакции — 60—70 °С. Следующий этап — спуск раствора из химического реактора. После этого на дне реактора остаются куски меди, не вступившие в реакцию. К полученной жидкости добавляется вода и проводится фильтрация.

Нажмите здесь, чтобы изучить свойства меди на примере взаимодействия с другими веществами.

Азотная кислота и медь: реакция на примере опыта

Проследить всю реакцию азотной кислоты и меди можно на примере опыта, положив в концентрированную азотную кислоту пластинку меди. Происходит выделение бурого газа: сначала медленное, затем более сильное.

Раствор приобретает зеленую окраску. Если в избытке добавлять медь в процессе реакции, раствор постепенно окрасится в голубой цвет.

Реакция меди с азотной кислотой происходит с выделением тепла и токсичного газа, имеющего резкий запах.

Взаимодействие меди с концентрированной азотной кислотой относится к окислительно-восстановительным реакциям. Восстановителем здесь является металл, а окислителем — азотная кислота. Уравнение реакции:

Cu + 4H­NO₃ = Cu(NO₃)₂ + 2NO₂↑ + 2H₂O

Реакция экзотермическая, поэтому при самопроизвольном разогреве смеси реакция ускоряется.

Реакция меди с азотной кислотой начинается при комнатной температуре. Металл покрывается пузырьками, они всплывают и наполняют пробирку бурым газом — NO₂ (токсичным ядовитым диоксидом азота с резким запахом). Этот газ в 1,5 раза тяжелее воздуха.

Реакция меди с азотной кислотой протекает в два этапа:

  • на первом этапе кислота окисляет медь до оксида меди, выделяя диоксид азота;
  • на втором этапе оксид меди реагирует с новыми порциями кислоты, образуя нитрат меди Cu(NO₃)₂. Смесь разогревается, и реакция протекает быстрее.

Нитрат меди (тригидрат) [Wikipedia]

Итог: металл растворился и образовался раствор нитрата меди. Благодаря нитрату меди полученный раствор имеет зеленый или голубой цвет (оттенок будет зависеть от количества использованной воды).

Физические и химические свойства меди

Свойства меди, которая в природе встречается и в виде достаточно крупных самородков, люди изучили еще в древние времена, когда из этого металла и его сплавов делали посуду, оружие, украшения, различные изделия бытового назначения.

Активное использование данного металла на протяжении многих лет обусловлено не только его особыми свойствами, но и простотой обработки.

Медь, которая присутствует в руде в виде карбонатов и окислов, достаточно легко восстанавливается, что и научились делать наши древние предки.

Медный слиток

Интересное о меди

Изначально процесс восстановления этого металла выглядел очень примитивно: медную руду просто нагревали на кострах, а затем подвергали резкому охлаждению, что приводило к растрескиванию кусков руды, из которых уже можно было извлекать медь.

Дальнейшее развитие такой технологии привело к тому, что в костры начали вдувать воздух: это повышало температуру нагревания руды. Затем нагрев руды стали выполнять в специальных конструкциях, которые и стали первыми прототипами шахтных печей.

О том, что медь используется человечеством с древних времен, свидетельствуют археологические находки, в результате которых были найдены изделия из данного металла. Историками установлено, что первые изделия из меди появились уже в 10 тысячелетии до н.

Естественно, предпосылками к такому активному использованию данного металла стали не только относительная простота его получения из руды, но и его уникальные свойства: удельный вес, плотность, магнитные свойства, электрическая, а также удельная проводимость и др.

В наше время уже сложно найти медь в природе в виде самородков, обычно ее добывают из руды, которая подразделяется на следующие виды.

  • Борнит — в такой руде медь может содержаться в количестве до 65%.
  • Халькозин, который также называют медным блеском. В такой руде меди может содержаться до 80%.
  • Медный колчедан, также называемый халькопиритом (содержание до 30%).
  • Ковеллин (содержание до 64%).

Халькопирит

Медь также можно извлекать из множества других минералов (малахит, куприт и др.). В них она содержится в разных количествах.

Физические свойства

Медь в чистом виде представляет собой металл, цвет которого может варьироваться от розового до красного оттенка.

Радиус ионов меди, имеющих положительный заряд, может принимать следующие значения:

  • если координационный показатель соответствует 6-ти — до 0,091 нм;
  • если данный показатель соответствует 2 — до 0,06 нм.

Радиус атома меди составляет 0,128 нм, также он характеризуется сродством к электрону, равном 1,8 эВ. При ионизации атома данная величина может принимать значение от 7,726 до 82,7 эВ.

Медь — это переходный металл, показатель электроотрицательности которого составляет 1,9 единиц по шкале Полинга. Кроме этого, его степень окисления может принимать различные значения. При температурах, находящихся в интервале 20–100 градусов, его теплопроводность составляет 394 Вт/м*К. Электропроводность меди, которую превосходит лишь серебро, находится в интервале 55,5–58 МСм/м.

Медная вода

Взаимодействует ли медь с водой

Ранее, в разделе «Вода» и подразделе «Виды воды» мы затронули несколько типов воды. Но ни один из этих видов ещё не был связан с металлами. Исправимся

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.