Коррозию металлических изделий уменьшают

Ржавчина на металле: вред, виды коррозии

Коррозию металлических изделий уменьшают

Мы – продавцы металлопроката – как никто сталкивается с этим наваждением – ржавиной. И мы точно знаем вред от коррозии. В этой статье мы скажем несколько слов об этой проблеме, ее проявлениях, ее масштабах.

Ущерб, ущерб..

Все видели эти оранжево-бурые или желтоватые пятна ржавчины на металлических деталях. Экономический ущерб от коррозии металлов огромен.

В США и Германии подсчитанный ущерб от коррозии и затраты на борьбу с ней составляют примерно 3 % ВВП.

При этом потери металла, в том числе из-за выхода из строя конструкций, изделий, оборудования, составляют до 20 % от общего объема производства стали в год. По России точные данные о потерях от коррозии не подсчитаны.

Доподлинно известно, что именно проржавевшие металлоконструкции стали причиной обрушения нескольких мостов в Соединенных Штатах, в том числе с многочисленными человеческими жертвами. Крайне неприятен и экологический вред: утечка газа, нефти при разрушении трубопроводов приводит к загрязнению окружающей среды.

Виды коррозии и ее причины

Перед тем как говорить о ржавчине на железе, кратко рассмотрим другие ее типы.

Коррозии подвержены не только металлы, но и неметаллические изделия. В этом случае коррозию еще называют «старением». Старению подвержены пластмассы, резины и другие вещества. Для бетона и  железобетона существует термин “усталость”.

Происходит их разрушение или ухудшение эксплуатационных характеристик из-за химического и физического воздействия окружающей среды.

Корродируют и металлические сплавы – медь, алюминий, цинк: в процессе их коррозии на поверхности изделий образуется оксидная пленка, плотно прилегающая к поверхности, что значительно замедляет дальнейшее разрушение металла (а патина на меди еще и придает ей особый шарм).

Драгоценные  металлы являются таковыми не только из-за своей красоты, ценимой ювелирами, но и за счет стойкости к коррозии. Золото и серебро до сих пор используется для покрытия особо чувствительных электронных контактов а платина применяется в космической отрасли.

Корродировать металл может в некоторых участках поверхности (местная коррозия), охватить всю поверхность (равномерная коррозия), или же разрушать металл по границам зерен (межкристаллитная коррозия). Коррозия заметно ускоряется с повышением температуры.

Типы ржавчины

В большей степени коррозии подвержено железо. С точки зрения химии ржавчина – это окислительный процесс (как и горение). Элементы возникающие при окислении в кислородной среде называются Оксиды. Можно выделить 4 основных типа.

1. Желтая ржавчина – химическая формула FeO(OH)H2O (оксид железа двухвалетный). Возникает во влажной, недонасыщенной кислородом среде. Часто встречается под водой. В природе существует в виде минерала вюстита, при этом являясь монооксидом (те содержит 1 атом кислорода).

2. Коричневая ржавчина – Fe2O3 (двойной оксид железа): растет без воды и встречается редко.

3. Черная ржавчина – Fe3O4 (оксид железа четырех валентый). Образуется при малом содержании кислорода и без воды поэтому стабильна и распространяется очень медленно. Этот оксид является ферромагнетиком (при определенных условиях обладает намагниченностью в отсутствие внешнего магнитного поля), поэтому потенциально применим для создания сверх-проводников.

4. Красная ржавчина – химическая формула Fe2O3•H2O (оксид железа трехвалентный). Возникает под воздействием кислорода и воды, самый частый тип, процесс протекает равномерно и затрагивает всю поверхность.

В отличии от всех вышеперечисленных не столь опасных для железа видов окисления этот в своей толще образует гидроксид железа, который, начиная отслаиваться, открывает для разрушения все новые слои металла. Реакция может продолжатся до полного разрушения конструкции.

 Применяется при выплавке чугуна и как краситель в пищевой  промышленности. Встречается в природе в естественном виде под названием гематид.

Несколько видов ржавления могут протекать одновременно, не особо мешая друг другу.

Химическая и электрохимическая коррозия

Железо ржавеет, если в нем есть добавки и примеси (например, углерод) и при этом контактирует с водой и кислородом. Если же в воде растворена соль (хлорида натрия и калия), реакция становится электрохимической и процесс ржавления ускоряется.

Массовое применение этих солей как в бытовой химии так и для борьбы с льдом и снегом делают электрохимическую коррозию очень распространенным и опасным явлением: потери в США от использования солей в зимний период составляют 2,5 млрд. долларов.

При одновременном воздействии воды и кислорода образуется гидроксид железа, который, в отличие от оксида, отслаивается от металла и никак его не защищает. Реакция продолжается либо до полного разрушения железа, либо пока в системе не закончится вода или кислород.

Электрохимическую коррозию могут вызывать блуждающие токи, возникающие при утечке из электрической цепи части тока в водные растворы или в почву и оттуда — в конструкции из металла.

В тех местах, где блуждающие токи выходят из металлоконструкций обратно в воду или в почву, происходит разрушение металлов. Особенно часто блуждающие токи возникают в местах движения наземного электротранспорта (например, трамваев и ж/д локомотивов на электрической тяге).

Всего за год блуждающие токи силой в 1А способны растворить железа — 9,1 кг, цинка — 10,7 кг, свинца — 33,4 кг.

Во второй части статьи мы расскажем, как вы можете защитить свои металлоконструкции от этой напасти или победить ее, если она уже атакует.

Источник: https://www.1metallobaza.ru/blog/kak-my-stradaem-ot-rzhavchiny

Коррозия металлов

Коррозию металлических изделий уменьшают

Коррозия – разрушение поверхности сталей и сплавов под воздействием различных физико-химических факторов – наносит огромный ущерб деталям и металлоконструкциям. Ежегодно этот невидимый враг «съедает» около 13 млн. т металла.

Для сравнения – металлургическая промышленность стран Евросоюза в прошлом, 2014 году произвела всего на 0,5 млн. тонн больше. И это только – прямые потери.

А длительная эксплуатация стальных изделий без их эффективной защиты от коррозии вообще невозможна.

Что такое коррозия и её разновидности

Основной причиной интенсивного окисления поверхности металлов (что и является основной причиной коррозии) являются:

  1. Повышенная влажность окружающей среды.
  2. Наличие блуждающих токов.
  3. Неблагоприятный состав атмосферы.

Соответственно этому различают химическую, трибохимическую и электрохимическую природу коррозии. Именно они в совокупности своего влияния и разрушают основную массу металла.

Химическая коррозия

Такой вид коррозии обусловлен активным окислением поверхности металла во влажной среде. Безусловным лидером тут является сталь (исключая нержавеющую).

Железо, являясь основным компонентом стали, при взаимодействии с кислородом образует три вида окислов: FeO, Fe2O3 и Fe3O4.

Основная неприятность заключается в том, что определённому диапазону внешних температур соответствует свой окисел, поэтому практическая защита стали от коррозии наблюдается только при температурах выше 10000С, когда толстая плёнка высокотемпературного оксида FeO сама начинает предохранять металл от последующего образования ржавчины. Это процесс называется воронением, и активно применяется в технике для защиты поверхности стальных изделий. Но это – частный случай, и таким способом активно защищать металл от коррозии в большинстве случаев невозможно.

Химическая коррозия активизируется при повышенных температурах. Склонность металлов к химическому окислению определяется значением их кислородного потенциала – способности к участию в окислительно-восстановительных реакциях. Сталь – ещё не самый худший вариант: интенсивнее её окисляются, в частности, свинец, кобальт, никель.

Электрохимическая коррозия

Эта разновидность коррозии более коварна: разрушение металла в данном случае происходит при совокупном влиянии воды и почвы на стальную поверхность (например, подземных трубопроводов).

Влажный грунт, являясь слабощёлочной средой, способствует образованию и перемещению в почве блуждающих электрических токов. Они являются следствием ионизации частиц металла в кислородсодержащей среде, и инициирует перенос катионов металла с поверхности вовне.

Борьба с такой коррозией усложняется труднодоступностью диагностирования состояния грунта в месте прокладки стальной коммуникации.

Электрохимическая коррозия возникает при окислении контактных устройств линий электропередач при увеличении зазоров между элементами электрической цепи. Помимо их разрушения, в данном случае резко увеличивается энергопотребление устройств.

Трибохимическая коррозия

Данному виду подвержены металлообрабатывающие инструменты, которые работают в режимах повышенных температур и давлений. Антикоррозионное покрытие резцов, пуансонов, фильер и пр. невозможно, поскольку от детали требуется высокая поверхностная твёрдость.

Между тем, при скоростном резании, холодном прессовании и других энергоёмких процессах обработки металлов начинают происходить механохимические реакции, интенсивность которых возрастает с увеличением температуры на контактной поверхности «инструмент-заготовка».

Образующаяся при этом окись железа Fe2O3 отличается повышенной твёрдостью, и поэтому начинает интенсивно разрушать поверхность инструмента.

Методы борьбы с коррозией

Выбор подходящего способа защиты поверхности от образования ржавчины определяется условиями, в которых работает данная деталь или конструкция. Наиболее эффективны следующие методы:

  • Нанесение поверхностных атмосферостойких покрытий;
  • Поверхностная металлизация;
  • Легирование металла элементами, обладающими большей стойкостью к участию в окислительно-восстановительных реакциях;
  • Изменение химического состава окружающей среды.

Механические поверхностные покрытия

Поверхностная защита металла может быть выполнена его окрашиванием либо нанесением поверхностных плёнок, по своему составу нейтральных к воздействию кислорода. В быту, а также при обработке сравнительно больших площадей (главным образом, подземных трубопроводов) применяется окраска.

Среди наиболее стойких красок – эмали и краски, содержащие алюминий.

В первом случае эффект достигается перекрытием доступа кислороду к стальной поверхности, а во втором – нанесением алюминия на поверхность, который, являясь химически инертным металлом, предохраняет сталь от коррозионного разрушения.

Положительными особенностями данного способа защиты являются лёгкость его реализации и сравнительно небольшие финансовые затраты, поскольку процесс достаточно просто механизируется. Вместе с тем долговечность такого способа защиты невелика, поскольку, не обладая большой степенью сродства с основным металлом, такие покрытия через некоторое время начинают механически разрушаться.

Химические поверхностные покрытия 

Коррозионная защита в данном случае происходит вследствие образования на поверхности обрабатываемого металла химической плёнки, состоящей из компонентов, стойких к воздействию кислорода, давлений, температур и влажности. Например, углеродистые стали обрабатывают фосфатированием.

Процесс может выполняться как в холодном, так и в горячем состоянии, и заключается в формировании на поверхности металла слоя из фосфатных солей марганца и цинка. Аналогом фосфатированию выступает оксалатирование – процесс обработки металла солями щавелевой кислоты.

   Применением именно таких технологий повышают стойкость металлов от трибохимической коррозии.

Недостатком данных методов является трудоёмкость и сложность их применения, требующая наличия специального оборудования. Кроме того, конечная поверхность изменяет свой цвет, что не всегда приемлемо по эстетическим соображениям.

Легирование и металлизация

В отличие от предыдущих способов, здесь конечным результатом является образование слоя металла, химически инертного к воздействию кислорода. К числу таких металлов относятся те, которые на линии кислородной активности находятся возможно дальше от водорода. По мере возрастания эффективности этот ряд выглядит так: хром→медь→цинк→серебро→алюминий→платина.

Различие в технологиях получения таких антикоррозионных слоёв состоит в способе их нанесения.

При металлизации на поверхность направляется ионизированный дуговой поток мелкодисперсного напыляемого металла, а легирование реализуется в процессе выплавки металла, как следствие протекания металлургических реакций между основным металлом и вводимыми легирующими добавками.

Изменение состава окружающей среды

В некоторых случаях существенного снижения коррозии удаётся добиться изменением состава атмосферы, в которой работает защищаемая металлоконструкция. Это может быть вакуумирование (для сравнительно небольших объектов), или работа в среде инертных газов (аргон, неон, ксенон).

Данный метод весьма эффективен, однако требует дополнительного оборудования – защитных камер, костюмов для обслуживающего персонала и т.д.

Используется он главным образом, в научно-исследовательских лабораториях и опытных производствах, где специально поддерживается необходимый микроклимат.

Кто нам мешает, тот нам поможет

В завершение укажем и на довольно необычный способ коррозионной защиты: с помощью самих окислов железа, точнее, одного из них – закиси-окиси Fe3O4. Данное вещество образуется при температурах 250…5000С и по своим механическим свойствам представляет собой высоковязкую технологическую смазку.

Присутствуя на поверхности заготовки,  Fe3O4  перекрывает доступ кислороду воздуха при полугорячей деформации металлов и сплавов, и тем самым блокирует процесс зарождения трибохимической коррозии. Это явление используется при скоростной высадке труднодеформируемых металлов и сплавов.

Эффективность данного способа обусловлена тем, что при каждом технологическом цикле контактные поверхности обновляются, а потому стабильность процесса регулируется автоматически.⁠

Оставляете заявку на сайте или по телефону

Оцениваем запрос и тех. документацию

Осматриваем объект

Подготавливаем КП

Сдаем работу заказчику

Выполняем работы

Разрабатываем рабочую документацию

Заключаем договор

Наши преимущества

Подготовленный персонал, находящийся постоянно в штате

Наличие богатого технического оснащения

Гарантийное и послегарантийное обслуживание

Самый большой спектр услуг в России

Большой опыт работы на разнотипных объектах

Источник: https://blastingservice.ru/services/udalenie-kraski/korroziya-metallov/

Скорость коррозии: справочник и датчики с индикаторами для определения процесса ржавчины металлов, ее расчет и зависимость от среды

Коррозию металлических изделий уменьшают

Ущерб, наносимый подобным процессом, огромен. Иногда стоимость принесенного им вреда во много раз превышает затраты на производство самого металла и на последующее использование деталей из него. По данным мировой статистики каждая шестая доменная печь в мире работает на то, чтобы покрыть последствия этого явления.

Коррозия — это процесс естественного разрушения металла под воздействием факторов среды, в которой он находится. Само название явления взято из латинского языка. «Коррозио» значит «разъедание».

Снижение скорости коррозии металла

Вред, причиняемый коррозией, не сводится только к разрушению самих изделий или деталей из металлов. Кроме того, что при ее воздействии приходят в негодность уже изготовленные предметы, пропадают усилия и труд людей, потраченные на производство. Основная причина расходов — это замена или ремонт деталей, вышедших из строя под влиянием этого процесса.

От того, где и как используются изделия, и от нахождения металла в грунте, на воздухе, при создании подводных трубопроводов или судов, различают два вида воздействия этого процесса:

  1. Химическое. Коррозия, имеющая название «химическая», наблюдается в сухих газах и веществах, не проводящих электричество. Она происходит в доменных печах, при прокате или ковке стали. К веществам при этом процессе относят сероуглероды, керосин, бензин. Химическая коррозия может наблюдаться в двигателях автомобилей и их бензиновых емкостях, нефтехимическом оборудовании, нефтепроводах.
  1. Электрохимическое. Электрохимическая коррозия сопровождается образованием электрических токов малого напряжения и протекает по принципу гальваники, когда металл и окружающая среда (морская, речная вода, сырая почва, влажная атмосфера, кислоты, основания) служат катодом и анодом.

В случае равномерной коррозии скорость может быть определена по формуле:

v=Δm / S•t, где

v — скорость коррозии, которую обычно выражают в таких единицах: г/(м2•ч) или мг/(см2•сут);

Δm — убыль (увеличение) массы;

S — площадь поверхности;

t — время.

Снижение скорости и уменьшение глубины коррозии является главной целью защиты железа и его сплавов от разрушения, вызванного этим процессом. Уменьшение поражения ржавчиной металлических деталей и конструкций достигается несколькими способами:

  • изменением факторов природной среды, действующей на металл;
  • путем получения антикоррозийных сплавов;
  • нанесением слоя покрытия, не подверженного коррозии;
  • напылением на поверхность изделия металлов, имеющих более высокую стойкостью к среде, которая вызывает это явление;
  • производится защита электрохимическими способами.

Изменение окружающей среды, вызывающей ржавчину, достигается внесением в нее различных ингибиторов коррозии. Этот способ находит все большее применение для снижения коррозии стали.

Сталь — наиболее распространенный вид металлических сплавов, используемых человеком, который производится путем выплавки и смешивания с различными элементами, создающими необходимые качества получаемого материала. За счет этого коррозия стали может снижаться.

Добавляют химические элементы на стадии получения, причем эти добавки не влияют на общие показатели металла. Этим способом получают легированные, нержавеющие стали.

Покрытия, предотвращающие явление ржавления или замедляющие его, называются антикоррозийными.

Слои могут наноситься лакокрасочным и гальваническим способами. Иногда их совмещают, получая покрытие, при котором коррозия стали снижается до минимума, что расширяет область применения материала.

Электрохимическим предохранением от коррозии является то, которое непосредственно влияет на смену потенциала железной детали в зависимости от области использования. Такая реакция проводится, когда заведомо известно место применения изделия. Она может быть анодной или катодной.

Самое неприятное в происходящем явлении, что ржавление (коррозия стали) является причиной разрушения или снижения прочности уже готовых изделий, которые непосредственно влияют на жизнь человека.

К примеру, аварии на различных трубопроводах, осуществляющих подачу газа, нефти; поломки или крушение разводных мостов, металлических конструкций, подъемных кранов.

Коррозии стали постоянно изучаются, и все новые способы предохранения от этого процесса разрабатываются с появлением новых технологий и развитием науки.

Источник:

Классификация видов коррозии и способы защиты от нее

Коррозия представляет собой опасный процесс деградации(то есть разрушения) верхнего слоя металлов под влиянием разнообразных сред. Обычно коррозию провоцирует химическая среда, которая окружает металл.

Вне зависимости от вида конструкции и ее работы, самым простым и понятным методом для ведения борьбы с таким явлением, для «защиты от коррозии» используются защитные краски и специальные лаки.

Основные типы коррозии

Говоря о механизме коррозийного процесса можно заметить 2 главных типа коррозии: химическую и электрохимическую.

Химическая — это явственный итог прохождения реакций, во время которых, после уничтожения металлической связи, части металла и все атомы, которые входят в окислители, создают собой крепкую связь.

Электроток между различными частями поверхности металл не может возникнуть. Данная разновидность коррозии может быть присуща химическим средам, которые не в состоянии передавать электроток.

Источник: https://xn----8sbna6aihebzq3cl.xn--p1ai/sposoby-borby-s-korroziej/kak-opredelit-skorost-korrozii.html

Коррозию металлических изделий уменьшают – Справочник металлиста

Коррозию металлических изделий уменьшают

Анодная защита не обеспечивает стойкости в присутствии агрессивных ионов. Так, хлоридные ионы разрушают пассивную пленку, а потому их концентрация должна поддерживаться низкой, за исключением защиты титана, который может пассивироваться в хлористоводородной кислоте.

В условиях анодной защиты имеет место хорошая рассеивающая способность электролитов и поэтому для поддержания ее установленной защиты требуется сравнительно небольшое количество электродов.

Однако при проектировании установок анодной защиты следует учитывать, что в условиях, предшествующих пассивации, рассеивающая способность хуже.

Анодная защита потребляет очень мало энергии и может применяться для защиты обычных конструкционных металлов, способных пассивироваться, например углеродистой и нержавеющей стали, во многих средах.

Эта защита легко подвергается контролю и измерениям и не требует дорогостоящей обработки поверхности металла, так как использует самопроизвольный эффект реакции между стенками емкостей и их содержимым.

Способ изящен, и его применение, по-видимому, будет расширяться, как только будут преодолены сложности измерения и контроля.

5 Покрытия, как метод защиты металлов от коррозии

Защита металлов, основанная на изменение их свойств, осуществляется или специальной обработкой их поверхности, или легированием.

Обработка поверхности металла с целью уменьшения коррозии проводится одним из следующих способов: покрытием металла поверхностными пассивирующими пленками из его трудно растворимых соединений (окислы, фосфаты, сульфаты, вольфраматы или их комбинации), созданием защитных слоев из смазок, битумов, красок, эмалей и т.п.

и нанесением покрытий из других металлов, более стойких в данных конкретных условиях, чем защищаемый металл (лужение, цинкование, меднение, никелирование, хромирование, свинцование, родирование и т.д.).

Защитное действие большинства поверхностных пленок можно отнести за счет вызванной ими механической изоляции металла от окружающей среды. По теории локальных элементов, их эффект следует рассматривать как результат увеличения электрического сопротивления (рис. 8).

Рис. 3. Коррозионная диаграмма, показывающая, что уменьшение скорости коррозии при нанесении поверхностных защитных слоёв может быть объяснено как увеличением омического сопротивления (а), так и повышением частных коррозионных реакций (б).

Повышение устойчивости железных и стальных изделий при покрытии их поверхности осадками других металлов обусловлено и механической изоляцией поверхности, и изменением ее электрохимических свойств.

При этом может наблюдаться или смещение обратимого потенциала анодной реакции в сторону более положительных значений (покрытия медью, никелем, родием), или увеличение поляризации катодной реакции – повышение водородного перенапряжения (цинк, олово, свинец).

Как следует из диаграмм (рис.8), все эти изменения уменьшают скорость коррозии.

Обработку поверхности металлов применяют для предохранения машин, оборудования, аппаратов и предметов домашнего обихода при временной защите в условиях транспортировки, хранения и консервации (смазка, пассивирующие пленки) и для более длительной защиты при их эксплуатации (лаки, краски, эмали, металлические покрытия). Общим недостатком этих металлов является то, что при удалении (например, вследствие износа или повреждения) поверхностного слоя скорость коррозии на поврежденном месте резко возрастает, а повторное нанесение защитного покрытия не всегда бывает возможно.

В этом отношении легирование является значительно более эффективным (хотя и более дорогим) методом повышения коррозионной стойкости металлов.

Примером повышения коррозийной стойкости металла легированием являются сплавы меди с золотом. Для надежной защиты меди необходимо добавлять к ней значительное количество золота (не менее 52,2 ат.%).

Атомы золота механически защищают атомы меди от их взаимодействия с окружающей средой.

Несравненно меньше количество легирующих компонентов требуется для повышения устойчивости металла, если эти компоненты способны образовывать с кислородом защитные пассивирующие пленки.

Так, введение хрома в количестве нескольких процентов резко увеличивает коррозионную стойкость сталей.

Теоретический и практический интерес представляет повышение коррозионной стойкости легированием катодными добавками (Томашов).

Для выяснения принципов, на которых основан этот метод, можно, следуя Колотыркину, рассмотреть потенциостатические кривые. В отсутствие внешнего поляризующего тока металл находится при стационарном потенциале (рис. 9), лежащим в области его активного растворения (до легирования). Скорость коррозии определяется при этом пересечением кривых и соответствует току .

При введении в исходный металл небольшого количества палладия (или другого металла с низким перенапряжением водорода) поляризационная кривая выделения водорода будет отвечать прямой , которая пересечет анодную кривую уже в области пассивного состояния. В результате этого стационарный потенциал сместится в положительную сторону до некоторого значения , а скорость коррозии снизится до величины , отвечающей скорости растворения металла в пассивном состоянии.

Таким образом, снижение скорости коррозии достигается за счет уменьшения торможений катодного процесса. Такой механизм защиты возможен лишь в том случае, если обратимый потенциал водородного электрода в данных условиях положительнее, чем Фладе – потенциал, и если точка пересечения катодной и анодной поляризационных кривых лежит в области пассивного состояния металла (рис.9).

Рис. 4. Поляризационная диаграмма, показывающая возможность защиты пассивирующегося металла от коррозии при увеличении скорости катодного процесса.

6 Ингибиторы

Скорость коррозии можно снизить также изменением свойств коррозионной среды. Это достигается или соответствующей обработкой среды, в результате которой уменьшается ее агрессивность, или введением в коррозионную среду небольших добавок специальных веществ, так называемых замедлителей или ингибиторов коррозии.

Обработка среды включает в себя все способы, уменьшающие концентрацию ее компонентов, особенно опасных в коррозионном отношении.

Так, например, в нейтральных солевых средах и пресной воде одним из самых агрессивных компонентов является кислород.

Его удаляют деаэрацией (кипячение, дистилляция, барботаж инертного газа) или смазывают при помощи соответствующих реагентов (сульфиты, гидразин и т.п.).

Уменьшение концентрации кислорода должно почти линейно снижать предельный ток его восстановления, а следовательно,  и скорость коррозии металла. Агрессивность среды уменьшается также при ее подщелачивании, снижение общего содержания солей и замене более агрессивных ионов менее агрессивными.

При противокоррозионной подготовке воды для уменьшения накипеобразования широко применяется ее очистка ионнообменными смолами.

Их тормозящее действие связано, по-видимому, или с окислением поверхности металла (нитриты, хроматы), или с образованием пленки труднорастворимого соединения между металлом, данным анионом и, возможно, кислородом (фосфаты, гидрофосфаты).

Исключение представляют в этом отношении соли бензойной кислоты, ингибирующий эффект которых связан, главным образом, с адсорбционными явлениями.

Все ингибиторы для нейтральных сред тормозят преимущественно анодную реакцию, смещая стационарный потенциал в положительную сторону.

До настоящего времени еще не удалось найти эффективных ингибиторов коррозии металлов в щелочных растворах. Некоторым тормозящим действием обладают лишь высокомолекулярные соединения.

В качестве ингибиторов кислотной коррозии применяются почти исключительно органические вещества, содержащие азот, серу или кислород в виде амино-, имино-, тиогрупп, а также в виде карбоксильных, карбонильных и некоторых других групп.

Согласно наиболее распространенному мнению, действие ингибиторов кислотной коррозии связано с их адсорбцией на границе раздела металл – кислота.

В результате адсорбции ингибиторов наблюдается торможение катодного и анодного процессов, снижающие скорость коррозии.

В связи с преобладающим адсорбционным эффектом органических ингибиторов кислотной коррозии особое значение для понимания механизма их действия и для рационального подхода к созданию новых ингибиторов приобретает величина заряда поверхности корродирующего металла, т.е. величина его — потенциала.

Применение приведенной шкалы потенциалов позволяет использовать данные электрокапиллярных измерений на ртути в растворах, содержащих органические соединения, для оченки их эффективности в качестве ингибиторов при кислотной коррозии железа и других металлов. Значение — потенциала корродирующего металла позволяет не только предсказать, какие вещества могут быть ингибиторами, но и рассчитать коэффициенты торможения.

Экспериментальные значения коэффициентов торможения кислотной коррозии железа в присутствии различных количеств диэтиламина, сопоставление с расчетной прямой приведены на рис. 10. Расчетная прямая вычерчена по уравнению

,

где — величина, постоянная для любого члена гомологических рядов аминов и пиридинов, а найдены из электрокапиллярных измерений по ртути.

Рис. 5. Сопоставление опытных (-l- и -¡- — данные двух авторов) и расчётных (прямая линия) коэффициентов торможения кислотной коррозии железа при введении разных количеств диэтиланилина.

Адсорбция, однако, является лишь необходимым условием проявления ингибирующего действия органических веществ, но не определяет полностью фактического эффекта ингибиторов.

Последний зависит также от многих других факторов – электрохимических особенностей протекания данного коррозионного процесса, характера катодной реакции, величины и природы перенапряжения водорода (при коррозии с водородной деполяризацией), возможных химических превращений ингибитора в ходе коррозии и т.д.

Действие большинства ингибиторов кислотной коррозии усиливается при одновременном введении добавок поверхностно – активных анионов: галогенидов, сульфидов и роданидов.

Источник: https://ssk2121.com/korroziyu-metallicheskih-izdeliy-umenshayut/

Скорость коррозии металла – классификация, оценка и методы снижения

Коррозию металлических изделий уменьшают

Коррозией называют самопроизвольное разрушение металлических поверхностей под влиянием взаимодействия металла с окружающей средой. Особенно сильно проявляя себя при повышенных механических и температурных напряжениях, коррозионные процессы наносят большой ущерб стальным конструкциям. Правильно оценить скорость коррозии означает повысить долговечность изделия.

Классификация видов ржавчины

Коррозия классифицируется по следующим признакам:

  1. По равномерности протекания. Встречается более равномерная, поверхностная коррозия (при которой с одинаковой степенью уменьшается толщина стенки изделия) и неравномерная, очаговая коррозия, которая характеризуется возникновением поврежденных точек или язв на стальной поверхности.
  2. По направленности действия. Встречается избирательная коррозия, при которой поражаются только определенные составляющие структуры металла, и контактная, разрушающая определенный металл (для биметаллических соединений).
  3. По масштабам своего действия известны такие виды коррозии, как межкристаллитная, разрушительно действующая по границам зерен стали (с постепенным распространением вглубь), и объемная, поражающая всю поверхность одновременно.

Интенсивность коррозии значительно увеличивается, если кроме неблагоприятных изменений/колебаний температуры и влажности на контактную поверхность металла дополнительно влияют напряжения растяжения, а также химически агрессивная среда.

Интенсивность коррозии многократно возрастает из-за растрескивания между смежными кристаллитами и их блоками. Еще агрессивнее на сталь воздействуют внешние растягивающе-сжимающие напряжения.

Механизмы возникновения и развития коррозионных явлений

Поскольку большинство стальных поверхностей работают в среде определенной влажности, а также в воде, водных растворах солей, кислот и щелочей, то преобладающим механизмом появления ржавчины является электролитический. Исключение составляет лишь печная коррозия, которая возникает в металлических конструкциях нагревательных устройств: там поверхностное разрушение происходит за счет образования высокотемпературной ржавчины – окалины.

Электролитическая

При электролитической коррозии в присутствии кислорода происходит реакция гидратации железа стали, конечным продуктом которой является гидрат окиси железа Fe(OH)2. Такое явление называют коррозией анодного типа. Но на этом процесс не заканчивается. Гидрат окиси железа – вещество нестабильное и в присутствии воды (или водных паров) довольно быстро распадается на различные окислы железа:

  • при повышенных температурах образуется преимущественно закись железа FeO;
  • при комнатных либо чуть выше – окись железа Fe2O3;
  • при промежуточных (в диапазоне температур +250…+450°C) – магнитная закись-окись железа Fe3O4.

В любом случае поверхность стали ржавеет, только индикаторы данного явления могут быть либо красновато-коричневыми, либо серовато-желтыми.

В присутствии кислот

Несколько иной механизм образования ржавчины происходит в присутствии кислот, кислых растворов либо жидких сред, которые не содержат кислорода. Здесь происходит анодное растворение стали с образованием гидридов – соединений железа с водородом.

Но последние являются химически нестойкими веществами, быстро окисляются в воздушной и влажной среде и также образуют ржавчину, только более рыхлую.

Особенно быстро распадаются гидриды железа тогда, когда в атмосфере или окружающей среде присутствуют соединения серы.

В присутствии нагрузок

По третьей схеме происходит коррозия при наложении внешних нагрузок на контактные поверхности. Здесь, помимо двух традиционных составляющих, обязательно присутствует третий компонент – смазка.

Поскольку все органические соединения всегда содержат кислород и водород, то при повышении температуры на контакте начинают протекать механохимические реакции окисления смазки.

Они заканчиваются тем, что вместо снижения трения отработанная и частично уже разрушенная смазка начинает активно окислять поверхности, образуя ржавчины.

Методы оценки коррозионных процессов

Интенсивность коррозии относительно стали определяется в зависимости от характера коррозионных явлений. Начинают обычно с визуального выявления наличия ржавчины на поверхности.

С помощью обычного микроскопа или даже лупы можно довольно точно оценить интенсивность коррозионных процессов и степень повреждения поверхности металла.

Более точно определяют степень повреждения так называемые показатели коррозии. С их помощью можно выяснить:

  • потерю массы изделия вследствие коррозии;
  • уменьшение линейного размера детали или конструкции;
  • интенсивность повреждения в зависимости от времени пребывания детали в коррозионно-активной среде.

Кроме количественной оценки наличия ржавчины, возможна и качественная. Ее индикаторами являются выявленные изменения микроструктуры стали. Так, выявляют межкристаллитную или избирательную коррозию. Гораздо реже интенсивность и скорость коррозии определяется по изменению химического состава окружающей металл среды или по количеству выделенного водорода.

Конкретные показатели коррозии, которые влияют на скорость коррозии, включают в себя:

  1. Интегральная коррозионная характеристика. Она рассчитывается как потеря массы стального изделия за год, деленная на площадь поверхности, на которой появилась ржавчина. При этом подвергшейся коррозии поверхностью стали считается такая, на которой имеются даже единичные поврежденные точки.
  2. Линейная коррозия. Рассчитывается в зависимости от плотности детали и толщины корродировавшего за год слоя изделия.

Какую величину лучше использовать? Если есть возможность точно взвесить деталь до и после ее эксплуатации либо оценить изменения в химическом составе раствора, в котором эта деталь функционировала, то предпочтительнее интегральная оценка коррозионных процессов. В частности, оценивают работоспособность контактной смазки. Если деталь проверяется лишь несколько раз за год либо оценку интенсивности коррозионных явлений необходимо выполнить оперативно, то лучше использовать второй параметр.

Определение быстроты процессов коррозии

Показатели коррозии помогают определить и интенсивность неблагоприятных изменений. Для этого используют понятие «скорость коррозии металла». Ее можно оценить двумя различными характеристиками, изменяющимися во времени.

Индикаторы коррозии можно установить по следующим количественным характеристикам:

  • по площади корродируемой поверхности;
  • по суммарной потере массы;
  • по изменениям в плотности;
  • по времени пребывания детали или конструкции в коррозионной среде (сутки);
  • по уменьшению толщины.

При этом количественными критериями для оценки характера коррозии стали в течение определенного периода времени могут быть:

  • абсолютные коррозионные потери по площади;
  • изменение линейных размеров изделия;
  • линейное коррозионное сопротивление;
  • скорость коррозии;
  • линейная скорость коррозии (миллиметров в год);
  • суммарная коррозионная стойкость или долговечность.

На практике применение того или иного критерия зависит от способа защиты металлической поверхности. Ее можно окрасить атмосферостойкими красками, а можно использовать металл с защитными покрытиями. Если коррозия протекает равномерно, тогда эффективность защиты может быть оценена более точно.

Если же интенсивность образования ржавчины в разных местах изделия различна, то выбрать наиболее целесообразный способ защиты можно только тогда, когда деталь нагружается внешними растягивающими напряжениями. Тогда со временем изменяется не только внешний вид поверхности, но и некоторые ее физические характеристики, в частности, теплопроводность и электросопротивление.

Индикаторами коррозии являются климатические факторы – температура, состав и относительная влажность окружающей среды, характер распределения внешних нагрузок.

Во внимание необходимо принимать также изменение освещенности по времени суток, количество осадков, возможное загрязнение воздуха.

Например, в зонах выбросов дымовых отходов вблизи химических комбинатов и металлургических производств, сопровождающихся резким увеличением процентного содержания SO2, коррозионные процессы резко активизируются.

В качестве индикаторов коррозионной активности можно использовать количественные зависимости коррозии от времени:

  1. Линейные – чаще всего это характерно для металлических поверхностей, не имеющих защитного покрытия.
  2. Экспоненциально убывающие – встречаются при кислотной коррозии обычных металлов и сплавов.
  3. Экспоненциально возрастающие – когда на поверхности детали имеется защитное покрытие.

Интенсивность образования ржавчины при таких условиях снижают:

  • малая скорость ветра;
  • пониженная цикличность во времени изменения показателей относительной влажности;
  • характер воздействия коррозионно-активной среды на поверхность.

При слабом ветре или его отсутствии нет условий для перемешивания потока, омывающего контактную поверхность стали.

При длительных фазах пониженной и повышенной влажности в течение года пленка поверхностной ржавчины успевает сформироваться, набухнуть и отделиться от основного металла.

Толщина поверхности снизится, зато коррозионные процессы вынуждены «запуститься» сначала, а для этого требуется не только время, но и подходящие условия – ветер или изменения в химическом составе воздуха, что бывает далеко не всегда.

Влага, кислота или щелочь могут попадать на поверхность стали в виде капель либо струйным путем. Первый способ характерен для зон с повышенным количеством осадков, а второй – для неблагоприятной окружающей среды, в которой функционирует деталь или металлическая конструкция.

Способы снижения коррозии: механизм и эффективность

Способность окрашенной поверхности противостоять коррозионным процессам зависит от того, какой механизм коррозии преобладает.

Например, при постоянном во времени воздействии химически активной среды существенно изменяется разность потенциалов внешней поверхности металлического изделия и его внутренних объемов.

При этом возникают коррозионные токи, усиливающие процесс коррозии (явление, часто вызывающее разрушение стальных труб в подземных трубопроводах). Здесь окрашивание не дает никакого эффекта, поскольку химический состав поверхности, покрытой слоем краски, со временем не меняется.

Иное дело, когда поверхность покрыта металлом, имеющим отрицательный электролитический потенциал по отношению к окислительно-восстановительным процессам. При преобладании окислительных реакций сталь эффективнее защитить путем нанесения поверхностного покрытия, содержащего в себе алюминий и цинк, – металлы, которые по своей кислородной активности стоят «левее» железа.

Такие процессы – цинкование и алюминирование – широко применяются в практике антикоррозионной защиты стальных узлов и отдельных деталей, находящихся в окислительной среде. Окрашивание в данных ситуациях носит вспомогательный характер, для повышения декоративных характеристик поверхности.

В восстановительной среде процесс образования гидридов железа может быть эффективно блокирован созданием поверхностных покрытий из металлов, находящихся «правее» водорода: это медь и все благородные металлы.

Меднение, хоть и используется на практике, обычно выполняется для относительно небольших по площади поверхностей, поскольку является весьма затратным процессом в плане финансов.

Именно для таких ситуаций можно и нужно применять окрашивание.

Окрашивание

Защитная роль красок состоит в том, что в их составе всегда присутствуют ингибиторы коррозии – компоненты, замедляющие во времени скорость протекания процессов окалинообразования.

Химические формулы веществ-ингибиторов разработаны таким образом, что в результате приостанавливается появление ржавчины.

Эластичность современных окрашивающих составов позволяет покрытиям успешно противостоять также и поверхностным напряжениям, которые провоцируют начало коррозионных процессов.

Антикоррозионные свойства красок увеличиваются, если в их составе находятся кремнийорганические полимеры, которые повышают способность окрашенной поверхности противостоять перепадам влажности и температуры независимо от времени года. Однако такие краски обладают двумя существенными недостатками:

  • ядовиты;
  • малоэффективны в условиях электролитического механизма коррозии.

Таким образом, правильно подобранные красящие составы могут достаточно эффективно блокировать коррозионные процессы. Для этого они должны содержать в себе ингибиторы коррозии, иметь достаточную эластичность и механическую прочность, незначительно изменяющуюся со временем.

Источник: https://kraska.guru/specmaterialy/korroziya/skorost-korrozii.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.