Кристаллическое строение металлов и сплавов

Кристаллическое строение металлов

Кристаллическое строение металлов и сплавов

Металлы — один из самых распространенных веществ в материальной культуре человека.

Тысячелетиями медь, железо, серебро и золото были основным материалом для производства оружия, инструментов, ответственных частей транспорта и механизмов, деталей домашней утвари и украшений.

В XIX веке, с освоением технологии получения чугуна, металлы пришли в строительство и станкостроение. XX век был веком металлов.

Металлы

В нашу жизнь вошли алюминий, титан, бор и многие более редкие металлы. Используя их, человечество шагнуло в небо, космос и глубины океана. Металлы сделали возможным массовое производство домашней бытовой техники.

В конце XX века пластмассы и композитные вещества ощутимо потеснили металлы с лидирующих позиций.

Основные характеристики металлов — прочность, упругость и пластичность определяются их физико-химическими свойствами и атомным строением.

Основные группы металлов в промышленности

Индустрия делит металлы на большие группы:

  • Черные.
  • Цветные легкие.
  • Цветные тяжелые.
  • Благородные.
  • Редкоземельные и щелочные.

Черные металлы

В эту группу входят железо, марганец, хром и их сплавы. Группа также включает в себя стали, чугуны и ферросплавы. Эти вещества обладают хорошей электропроводностью и уникальными магнитными характеристиками.

Черные металлы

Черные металлы покрывают до 90% мировой потребности в металлоизделиях.

Легкие цветные металлы

Отличаются низкой плотностью. Группа включает в себя алюминий, титан, магний. Эти реже встречаются, чем железо, и обходятся дороже в добыче руды и в производстве. Они используются там, где малый вес изделия или детали окупает ее большую стоимость – в самолетостроении, производстве электроники, в коммуникационной индустрии.

Легкие цветные металлы

Титан не вызывает отторжения со стороны иммунной системы и применяется в протезировании костной ткани.

Тяжелые цветные металлы

Это элементы с большим удельным весом, такие, как медь, олово, свинец, цинк и никель. Обладают хорошей электропроводностью.

МедьОловоЦинкСвинец
Чистый никель

Они широко используются как катализаторы реакций, в изготовлении электроматериалов, в электронике, на транспорте – везде, где требуются достаточно прочные, упругие и коррозионностойкие материалы.

Благородные металлы

В эту группу входят золото, серебро, платина, а также редко встречающееся рутений, родий, палладий, осмий, иридий. Они обладают наибольшим удельным весом, высокой коррозионной устойчивостью и высокой электрической и тепловой проводимостью.

Золото и платинаСеребро

На заре человечества золото, серебро и платина применялись как универсальный платежный инструмент и как средство накопления богатств. С развитием цифровой экономики и переходом платежей в виртуальность важнее стаи их уникальные физические свойства

Редкоземельные и щелочные

К редкоземельным относятся скандий, иттрий, лантан и еще 15 редких элементов. Эти элементы отличаются значительным удельным весом, высокой химической активностью и применяются в высокотехнологичных отраслях.

ИттрийСканидийЛантан

К щелочным относятся литий, калий, натрий и другие. Все они отличаются малым удельным весом и исключительной химической активностью и при реакции с водой образуют щелочи, широко применяемы в быту и промышленности в составе мыла и других моющих средств.

Щелочные металлы

Классификация металлов по химическому составу

Химические свойства чистых элементов определяются строением атомов реальных металлов и прежде всего их атомным числом, характеризующим их способность реагировать с водородом, кислородом и другими элементами. Химические характеристики реально применяемых металлов могут сильно отличаться от параметров чистого вещества как в лучшую, так и в худшую сторону.

Нежелательные добавки называют примесями, а те, что вносятся преднамеренно для изменения параметров в нужную сторону — легирующими присадками.

Общепризнанной является классификация, основанная на указании главного компонента сплава.

Атомно — кристаллическое строение металлов

Внутреннее строение металлов и их характеристики определяют их физико-химические свойства. Электроны на внешних орбитах атомов слабо связаны с ядром и имеют отрицательный заряд. При наличии разницы потенциалов электроны мигрируют к положительному полюсу, создавая электрический ток. Это физическое явление обуславливает электропроводность.

Кристаллическое строение свойственно металлам и их сплавам в твердом фазовом состоянии. Атомы выстраиваются в определенную объемную структуру, называемую кристаллической решеткой.

Число атомов в вершинах и на гранях этой структуры, а также дистанция между ними определяют такие физические свойства металла, как электро- и теплопроводность, вязкость, текучесть и т.д.

Кристаллическое строение металлов и сплавов может быть двух типов:

  • Межатомная дистанция одинакова по всем направлениям. Это так называемое изотропное строение. При этом физические свойства кристалла также одинаковы по всем направлениям.
  • Межатомное расстояние по горизонтали и по вертикали разное. Такой кристалл называют анизотропным, и его физические параметры меняются в зависимости от направления.

Атомно-кристаллическое строение металлов

В реальном куске металлов, составленному из множества изолированных кристаллических фрагментов, атомно кристаллическое строение принадлежит к третьему типу — квазиизотропному. В среднем свойства такого куска близки к изотропным.

При выстраивании кристаллической решетки некоторые атомы не попадают на свое место, смещаются или теряются. В этом случае говорят о дефектах кристаллического строения металлов.

Дефекты структуры отрицательно влияют на свойства изделия, особенно если оно должно быть монокристаллом, как, например, в электронике, лазерной технике и других отраслях высоких технологий.

Физические свойства металлов

Физические свойства определяются внутренним строением металлов.

Главное отличие металлов от других элементов — это их электропроводность и магнитные свойства.

И хотя ученые создали неметаллические материалы, обладающие другим строением, но такими же свойствами, как у металлов и сплавов, они еще слишком дороги для массового применения. Многие химически чистые металлы обладают недостаточной прочностью для практических применений, чтобы исправить ситуацию, в технике и строительстве используют их сплавы.

Физические свойства металлов

Добавление тех или иных присадок приводит к росту прочность получаемого вещества в десятки раз по отношению к исходному элементу.

Электронное строение металлов и их особенности

Внутреннее строение реальных металлов определяет их физико-химические параметры.

Кристаллическая решетка металлов

Все металлы в твердом фазовом состоянии имеют кристаллическое строение. Это пространственное образование из многократно повторяющихся первичных структур называют кристаллической решеткой.
схема кристаллической решетки.

Кристаллическое строение металлов

Кристаллическое строение металлов и сплавов может быть двух типов:

  • Межатомная дистанция равна по всем направлениям. Это так называемое изотропное строение. При этом физические свойства кристалла также одинаковы по всем направлениям.
  • Межатомное расстояние по горизонтали и по вертикали разное. Такой кристалл называют анизотропным, его параметры зависят от направления.

В реальном куске металлов, который состоит из множества кристаллических фрагментов, атомно кристаллическое строение принадлежит к третьему типу — квазиизотропному. Усредненные параметры такого куска близки к изотропным.

Типы кристаллических решеток

Дистанцию соседними атомами называют параметром решетки, у разных металлов он составляет 2 — 6 ангстрем. Существуют три основных типа кристаллических решеток:

  • Кубическая: объемно-центрированная — включает в себя девять атомов. Свойственна железу, хрому, молибдену, и ванадию.
  • Кубическая гранецентрированная: включает в себя уже 14 атомов. Присуща меди, золоту, свинцу, алюминию.
  • Гексагональная: атомов уже 17 и размещены они наиболее плотно. Так кристаллизуются магний, цинк кадмий и другие.

Уникальная возможность железа заключается в том, что до 910°С оно имеет кубическую объемно-центрированную структуру, а при нагреве свыше этой температуры переходит к гранецентрированной.

Кристаллическое строение сплавов

Сплав это материал, состоящий из двух и более химических элементов. В его состав могут входить как металлы, так и неметаллы. Например, бронза — это сплав меди и олова, а чугун — сплав железа и углерода.

Кроме основных, в состав могут входить и другие вещества, содержащиеся в небольших количествах. Если их добавляют специально и улучшают свойства материала, их называют легирующими присадками, если ухудшают — вредными примесями.

Кристаллическое строение сплавов сложнее, чем металлов.

Строение сплавов

Оно определяется взаимовлиянием компонентов при образовании кристалла, и принадлежит к трем подвидам:

  • Твердые растворы. Один элемент растворяется в другом. Ведущий элемент строит кристаллическую структуру, а атомы второстепенного элемента размещаются в объеме этой решетки.
  • Химическое соединение. Элементы химически реагируют друг с другом, образуя новое соединение. Из его молекул и составляется кристаллическая решетка.
  • Механическая смесь. Элементы сплава не реагируют друг с другом. Каждый строит свои кристаллические структуры, срастающиеся в независимые кристаллы. Сплав будет представлять собой затвердевшую смесь из множества кристалликов двух разных типов. Такое вещество будет иметь собственную температуру перехода в жидкую фазу.

Физические свойства сплавов могут заметно меняться при изменении процентного соотношения составляющих.

Кристаллизация сплавов

Первичная кристаллизация — это затвердевание расплава с образованием кристаллических решеток. Пространственные атомные и молекулярные структуры, возникающие в ходе такого процесса, оказывают решающее влияние на свойства получаемого сплава.

Сначала в остывающем расплаве возникают центры кристаллизации, вокруг них в ходе процесса и нарастают кристаллы, многократно повторяя структуру центра. В качестве центров кристаллизации могут выступать:

  • Первые образовавшиеся кристаллы в зонах локального охлаждения, чаще всего у стенок литейной формы.
  • Частички неметаллических примесей.
  • Тугоплавкие примеси, уже находящиеся в твердой форме.

Процесс кристаллизации металлов и сплавов

Кристаллы обычно растут в направлении роста градиента температуры. Если рост решеток не встречает физических препятствий, образуются ветвящиеся кристаллические структуры, напоминающие кораллы — дендриты. Если они растут из разных центров и встречаются в расплаве, то препятствуют росту друг друга и искажают свою форму.

Такие искаженные кристаллы – это кристаллиты, или зерна. Совокупность отдельных зерен срастается в поликристаллическое тело.
Отдельные кристаллиты достигают размеров от одного до 10 000 микрон и по-разному развернуты в пространстве. На стыках отдельных кристаллитов образуется граничный слой, в котором кристаллические решетки разорваны.

Такие слои обладают измененными химическими и физическими свойствами.

Решетки кристаллитов могут обладать разными дефектами структуры:

  • точечные;
  • линейные;
  • поверхностные;

Дефекты кристаллического строения металлов

Дефекты определяются отсутствием атома или группы атомов в вершинах или гранях кристаллической решетки, смещением этих атомов со своих мест или замещением атома или их группы атомами или молекулами примесей.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Pereosnastka.ru

Кристаллическое строение металлов и сплавов

Кристаллическое строение металлов

Категория:

Металлы

Кристаллическое строение металлов

Все вещества в твердом состоянии имеют кристаллическое или аморфное строение.

В аморфном веществе (стекле, канифоли) атомы расположены хаотично, без всякой системы.

В кристаллическом веществе атомы расположены по геометрически правильной схеме и на определенном расстоянии друг от друга.

Все металлы исплавы имеют кристаллическое строение.

Кристаллические зерна имеют неопределенную форму и внешне не похожи на типичные кристаллы — многогранники, поэтому их называют кристаллитами, зернами или гранулями. Однако внутреннее строение кристаллитов ничем не отличается от внутреннего строения кристаллов.

Виды кристаллических решеток. При затвердевании атомы металлов образуют геометрически правильные системы, называемые кристаллическими решетками,

Порядок расположения атомов в решетке может быть различным, ехнич.

ские металлы образуют решетки, простейшие (элементарные; ячейки которых представляют центрированный куб [а- и б-железо, хром, молибден, вольфрам, ванадий, марганец], куб с центрированными гранями [у-железо, алюминий, медь, никель, свинец или гексагональную, имеющую форму шестигранной призмы ячейку (магний, цинк, а-титан, а-кобальт).

Элементарная ячейка повторяется в трех измерениях, образуя кристаллическую решетку, поэтому положение атомов в элементарной ячейке определяет структуру всего кристалла.

Элементарная ячейка центрированного куба (рис. 1) состоит из девяти атомов, из которых восемь расположены по вершинам куба, а девятый — в его центре.

Для характеристики кристаллической решетки (атомной структуры кристалла) применяют пространственную решетку, которая является геометрической схемой кристаллической решетки и состоит из точек (узлов), закономерно расположенных в пространстве.

На рис. 2 приведена часть пространственной решетки центрированного куба. Здесь взяты восемь смежных элементарных ячеек; узлы, расположенные по вершинам и в центре каждой ячейки, отмечены кружками.

Элементарная ячейка куба с центрированными гранями (рис. 3) состоит из 14 атомов, из них 8 атомов расположены по вершинам куба и 6 атомов — по граням.

На рис. 4 приведена часть пространственной решетки куба с центрированными гранями (гранецентрированного куба). На схеме имеется восемь элементарных ячеек: узлы расположены по вершинам и по центрам граней каждой ячейки.

Гексагональная ячейка состоит из 17 атомов, из них 12 атомов расположены по вершинам шестигранной призмы, 2 атома — в центре основания и 3 атома — внутри призмы.

Для измерения расстояния ‘между соседними атомами кристаллических решеток пользуются специальной единицей, называемой ангстремом (А); А = 10~8 см.

Параметр решеток (сторона куба или шестигранника) у меди 3,6А, а у алюминия 4,05 А, у цинка 2,67 А и т. д.

Каждый атом состоит из положительно заряженного ядра и нескольких слоев (оболочек) отрицательно заряженных и движущихся вокруг ядра электронов. Электроны внешних оболочек атомов металлов, называемые валентными, легко отщепляются, быстро движутся между ядрами и называются свободными.

Вследствие наличия свободных электронов атомы металлов являются положительно заряженными ионами.

Таким образом, в узлах решеток, обозначенных кружками на рис. 2 и 4, находятся положительно заряженные ионы. Ионы, однако, не находятся в покое, а непрерывно колеблются около положения равновесия.

С повышением температуры амплитуда колебаний увеличивается, что вызывает расширение кристаллов, а при температуре плавления колебания частиц усиливаются настолько, что это приводит к разрушению кристаллической решетки.

Рис. 1. Элементарная ячейка центрированного куба

Рис. 2. Часть пространственной решетки центрированного куба

Рис. 3. Элементарная ячейка куба с центрированными гранями

Рис. 4. Часть пространственной решетки куба с центрированными гранями

Рис. 5. Гексагональная ячейка

Во всех кристаллах наблюдаются небольшие отклонения от идеальной решетки — незанятые узлы и различного рода смещения атомов. На рис. 34 приведены схемы строения идеальной и реальной кристаллических решеток.

Анизотропность и спайность кристаллов,. В отдельных кристаллах свойства различны в разных направлениях.

Если взять большой кристалл, вырезать из него несколько одинаковых по размеру, но различно ориентированных образцов, и произвести испытания их, то иногда можно получить весьма значительную разницу в свойствах между отдельными образцами.

Например, при испытании образцов, вырезанных из кристалла меди, величина удлинения изменялась в пределах от 10 до 55%, а величина предела прочности — от 14 до 35 кг!мм2 для различных образцов. Это свойство кристаллов называют анизотропностью. Анизотропность кристаллов объясняется определенным расположением атомов в пространстве.

Рис. 6. Схема строения идеальных (а) и реальных (б) кристаллов

Следствием анизотропности кристаллов является спайность, которая выявляется при разрушении.

В местах излома кристаллов можно наблюдать правильные плоскости, указывающие на то, что смещение частиц под влиянием внешних сил происходит не беспорядочно, а правильными рядами, в определенном направлении, соответственно расположению частиц в кристалле. Эти плоскости называются плоскостями спайности.

Аморфные тела изотропны, т. е. все их свойства одинаковы во всех направлениях. Излом аморфного тела всегда имеет неправильную, искривленную, так называемую раковистую поверхность.

Металлы, затвердевшие в обычных условиях, состоят не из одного кристалла, а из большого количества отдельных кристаллов, различно ориентированных по отношению друг к другу, поэтому свойства литого металла будут приблизительно одинаковы во всех направлениях; это явление называют квазиизотропностью (кажущейся изотропностью).

Аллотропия металлов. Аллотропией (или полиморфизмом) металлов называется их свойство иметь различное строение при различных температурах.

Аллотропию обнаруживают все элементы, имеющие валентность, меняющуюся при изменении температуры: например, железо, марганец, никель, олово и др. Каждое аллотропическое превращение происходит при определенной температуре.

Например, одно из превращений железа протекает при температуре 910°, ниже которой атомы составляют решетку центрированного куба, а выше — решетку гранецентрированного куба.

Та или иная структура называется аллотропической формой или модификацией. Различные модификации обозначают греческими буквами а, (3, у и т. д. в виде индексов, причем букву а приписывают модификации, существующей при темперах-турах ниже первого аллотропического превращения. Аллотропические превращения сопровождаются выделением или поглощением теплоты.

Кристаллизация металлов. Кристаллизацией металлов называется образование кристаллов в металлах (и сплавах) при переходе из жидкого состояния в твердое (первичная кристаллизация). Перекристаллизацию из одной модификации в другую в процессе охлаждения затвердевшего металла называют вторичной кристаллизацией.

Процесс кристаллизации металла легче всего проследить с помощью счетчика времени и термоэлектрического пирометра, который представляет милливольтметр 2, подключенный к термопаре. Термопару (две разнородные проволоки, спаянные концами) погружают в расплавленный металл.

Возникающий при этом термоток пропорционален температуре металла, и стрелка милливольтметра отклоняется, указывая эту температуру по специально градуированной шкале.

Показания пирометра записывают во времени и по полученным данным строят кривые охлаждения в координатах температура —время.

Температура, соответствующая какому-либо превращению в металле, называется критической точкой.

На рис. 8,а приведена кривая, полученная при нагревании металла. Здесь горизонтальный участок (площадка ab) указывает место критической точки плавления tnjl. Точка а соответствует началу плавления, точка b — окончанию плавления.

Рис. 7. Схема изменения температуры металла термоэлектрическим пирометром

Участок ab характеризует неизменность температуры во времени при продолжающемся нагреве. Это показывает, что тепловая энергия затрачивается на внутреннее превращение в металле, в данном случае на превращение твердого металла в жидкий (скрытая теплота плавления).

При охлаждении переход из жидкого состояния в твердое сопровождается образованием кристаллической решетки, т. е. кристаллизацией.

Рис. 8. Кривые нагревания (а) и охлаждения (б — без петли, в — с петлей) металла

У некоторых металлов величина переохлаждения (tnx — tnp) оказывается весьма значительной (у сурьмы, например, до 40°), и при температуре переохлаждения tnp сразу бурно начинается кристаллизация, в результате чего температура скачкообразно повышается почти до tnjl. В этом случае на графике образуется петля теплового гистерез иса.

При затвердевании и при аллотропическом превращении в металле вначале образуются центры кристаллизации, вокруг которых группируются атомы, образуя соответствующую кристаллическую решетку.

Таким образом, процесс кристаллизации, складывается из двух этапов: образования центров кристаллизации и роста кристаллов.

У каждого из возникающих кристаллов кристаллографические плоскости ориентированы случайно, кроме того, при первичной кристаллизации кристаллы могут поворачиваться, так как они окружены жидкостью. Смежные кристаллы растут навстречу друг другу и точки их столкновения определяют границы кристаллитов (зерен).

У аморфных веществ кривые охлаждения плавные, без площадок и уступов; понятно, что аллотропии у этих веществ быть не может.

Кристаллизация железа. Рассмотрим в качестве примера процесс кристаллизации и критические точки железа, важнейшего технического металла.

На рис. 9 приведены кривые охлаждения и нагревания чистого железа. Железо плавится при температуре 1539°. Наличие критических точек при более низких температурах указывает на то, что железо имеет несколько аллотропических видоизменений в твердом состоянии.

Критические точки превращений железа обозначают буквой А, приписывая букву с — при нагревании и букву г — при охлаждении; индексы 2, 3 и 4 служат для отличия аллотропических превращений друг от друга (индекс 1 резервирован для обозначения превращений на диаграмме состояния Fe—Fe3C.

Рис. 9. Кривые охлаждения и нагревания железа

При температурах ниже 768° железо обладает магнитными свойствами и имеет кристаллическую решетку центрированного куба. Эта модификация носит название а-железо: при нагревании она в точке Асг переходит в немагнитную модификацию Р-железо.

Кристаллическая структура при этом не меняется (по современным представлениям магнитное превращение связано с изменениями во внешних электронных оболочках атомов), поэтому р-железо называют также немагнитным а-железом.

В точке Ас3 при температуре 910° Р-железо (немагнитное а-железо) переходит в у-железо, имеющее кристаллическую решетку гранецен-трированного куба.

В точке Ас4 при температуре 1401° у-железо переходит в б-железо, причем кристаллическая решетка вновь перестраивается из гранецен-трированного куба в центрированный куб.

При охлаждении будут иметь место те же переходы, только в обратной последовательности.

Из перечисленных превращений наибольшее практическое значение имеют превращения в точке А3 как при нагреве, так и при охлаждении.

у-железо способно растворить до 2% углерода при температуре 1130°; а-железо — до 0,025% при 723° и лишь 0,006% при 0°. Свойство у-железа растворять значительное количество углерода используется для производства ряда операций термической и химико-термической обработки.

Превращение в точке А3 связано с изменением объема, так как плотность кристаллической решетки у-железа больше плотности решетки а-железа.

Реклама:

Основные свойства металлов

Кристаллическое строение металлов. Кристаллическая решетка металлов

Кристаллическое строение металлов и сплавов

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. В каждую эпоху предпочтение отдавалось разным видам этих удивительных веществ. Так, IV-III тысячелетия до нашей эры считаются веком хальколита, или медным. Позже его сменяет бронзовый, а затем в силу вступает тот, что и по сей день является актуальным — железный.

Сегодня вообще сложно представить, что когда-то можно было обходиться без металлических изделий, ведь практически все, начиная от предметов быта, медицинских инструментов и заканчивая тяжелой и легкой техникой, состоит из этого материала или включает в свой состав отдельные части из него. Почему же металлы сумели завоевать такую популярность? В чем проявляются особенности и как это заложено в их строении, попробуем разобраться далее.

Общее понятие о металлах

«Химия. 9 класс» — это учебник, по которому проходят обучение школьники. Именно в нем подробно изучаются металлы. Рассмотрению их физических и химических свойств отведена большая глава, ведь разнообразие их чрезвычайно велико.

Именно с этого возраста рекомендуют давать детям представление о данных атомах и их свойствах, ведь подростки уже вполне могут оценить значение подобных знаний. Они прекрасно видят, что окружающее их разнообразие предметов, машин и прочих вещей имеет в своей основе как раз металлическую природу.

Что же такое металл? С точки зрения химии, к данным атомам принято относить те, что имеют:

  • малое число электронов на внешнем уровне;
  • проявляют сильные восстановительные свойства;
  • имеют большой атомный радиус;
  • как простые вещества обладают рядом специфических физических свойств.

Основу знаний об этих веществах можно получить, если рассмотреть атомно-кристаллическое строение металлов. Именно оно объясняет все особенности и свойства данных соединений.

В периодической системе для металлов отводится большая часть всей таблицы, ведь они образуют все побочные подгруппы и главные с первой по третью группу. Поэтому их численное превосходство очевидно. Самыми распространенными являются:

  • кальций;
  • натрий;
  • титан;
  • железо;
  • магний;
  • алюминий;
  • калий.

Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет именно кристаллическое строение металлов.

Свойства металлов

К специфическим свойствам рассматриваемых веществ относят следующие.

  1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым серебристо-белым цветом. Лишь некоторые (золото, медь, сплавы) отличаются.
  2. Ковкость и пластичность — способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.
  3. Электропроводность и теплопроводность — одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

Атомно-кристаллическое строение металлов

В чем же заключается такое строение, чем характеризуется? Само название говорит о том, что все металлы представляют собой кристаллы в твердом состоянии, то есть при обычных условиях (кроме ртути, которая является жидкостью). А что такое кристалл?

Это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов.

Они располагаются в нем не хаотично, а очень правильно и последовательно.

Так вот, если мысленно соединить все эти частицы в одну структуру, то получится красивое изображение в виде правильного геометрического тела какой-либо формы.

Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку.

Совокупность таких ячеек, собранная вместе и отраженная в трехмерном пространстве, и образует кристаллические решетки.

Химия, физика и металловедение — это науки, которые занимаются изучением особенностей строения таких структур.

Сама элементарная ячейка — это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц.

Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом.

В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства.

Существует несколько разновидностей кристаллических решеток. Объединяет их все одна особенность — в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Объемно-центрированная решетка

Строение кристаллической решетки металлов данного типа представляет собой следующую структуру. Это куб, в узлах которого находится восемь атомов. Еще один располагается в центре свободного внутреннего пространства ячейки, что и объясняет название «объемно-центрированная».

Это один из вариантов наиболее простого строения элементарной ячейки, а значит, и всей решетки в целом. Такой тип имеют следующие металлы:

  • молибден;
  • ванадий;
  • хром;
  • марганец;
  • альфа-железо;
  • бетта-железо и другие.

Основные свойства таких представителей — высокая степень ковкости и пластичности, твердость и прочность.

Гранецентрированная решетка

Кристаллическое строение металлов, имеющих гранецентрированную кубическую решетку, представляет собой следующую структуру. Это куб, который включает в свой состав четырнадцать атомов. Восемь из них формируют узлы решетки, а еще шесть расположены по одному на каждой грани.

Подобную структуру имеют:

  • алюминий;
  • никель;
  • свинец;
  • гамма-железо;
  • медь.

Основные отличительные свойства — блеск разного цвета, легкость, прочность, ковкость, повышенная устойчивость к коррозии.

Гексагональная решетка

Кристаллическое строение металлов, обладающих данным типом решетки, следующее. В основе элементарной ячейки лежит шестигранная призма. В ее узлах располагается 12 атомов, еще два по основаниям и три атома свободно лежат внутри пространства в центре структуры. Всего семнадцать атомов.

Подобную сложную конфигурацию имеют такие металлы, как:

  • альфа-титан;
  • магний;
  • альфа-кобальт;
  • цинк.

Основные свойства — высокая степень прочности, сильный серебристый блеск.

Дефекты кристаллического строения металлов

Однако все рассмотренные типы ячеек могут иметь и естественные недостатки, или так называемые дефекты. Это может быть связано с разными причинами: посторонними атомами и примесями в металлах, внешними воздействиями и прочим.

Поэтому существует классификация, отражающая дефекты, которые могут иметь кристаллические решетки. Химия как наука изучает каждый из них с целью выявления причины и способа устранения, чтобы свойства материала не были изменены. Итак, дефекты следующие.

  1. Точечные. Они бывают трех основных видов: вакансии, примеси или дислоцированные атомы. Приводят к ухудшению магнитных свойств металла, электро- и теплопроводности его.
  2. Линейные, или дислокационные. Выделяют краевые и винтовые. Ухудшают прочность и качество материала.
  3. Поверхностные дефекты. Влияют на внешний вид и структуру металлов.

В настоящее время разработаны методики устранения дефектов и получения чистых кристаллов. Однако совсем искоренить их не удается, идеальной кристаллической решетки не существует.

Значение знаний о кристаллическом строении металлов

Из вышеизложенного материала очевидно, что знания о тонкой структуре и строении позволяют спрогнозировать свойства материала и повлиять на них. И это позволяет делать наука химия.

9 класс общеобразовательной школы делает в процессе обучения упор на то, чтобы сформировать у учащихся четкое понятие о важном значении основополагающей логической цепочки: состав — строение — свойства — применение.

Сведения о кристаллическом строении металлов очень четко иллюстрирует эту зависимость и позволяет учителю наглядно объяснить и показать детям, насколько важно знать тонкую структуру, чтобы правильно и грамотно использовать все свойства.

Строение металлов |

Кристаллическое строение металлов и сплавов

Все металлы состоят из огромного количества кристаллических зерен, которые соединяются между собой. Такое зернистое кристаллическое строение вещества можно увидеть, применяя специальные микроскопы, получившие название металлографических.

Они отличаются от обычных тем, что здесь применяется боковое освещение металла, потому что металлы непрозрачны и их невозможно освещать снизу.

В таких микроскопах источник света располагается так, чтобы часть лучей отражалась от поверхности металлов и попадала в объектив.

Рис. 1. Металломикроскоп.

Справа сверху — лучи света, отраженные от поверхности шлифа, идут в объектив микроскопа. Справа внизу — поверхность чистого железа, видимая с помощью металломикроскопа.

На рисунке 1 представлен один из таких микроскопов. Прежде чем рассматривать в нем образец, поверхность металла тщательно очищают наждачной бумагой, шлифуют и полируют до зеркального блеска. Такой образец называют шлифом.

Затем поверхность шлифа подвергают так называемому травлению, для чего он смачивается в течение 2—3 мин раствором, чаще всего содержащим азотную кислоту и этиловый спирт. Применяют и другие растворы для травления шлифов.

Делают это вот для чего: различные зерна сплава неодинаково растворяются кислотой, вследствие чего на поверхности металла выступают отдельные грани кристаллов, и когда протравленную часть шлифа освещают, то часть зерен отражает падающий на них свет прямо на объектив. Эти места под микроскопом кажутся светлыми.

Другие зерна отражают свет в сторону, поэтому кажутся темными. Другой оттенок и даже окраску приобретают под микроскопом места сцепления отдельных кристаллических зерен, так называемые межкристаллитные участки (рис. 2).

Рис. 2. Шлифованная пластинка под микроскопом (травление стали 2-процентным спиртовым раствором азотной кислоты).

Применение металломикроскопа дало возможность установить, какое строение имеют металлы, как расположены в сплаве отдельные зерна, какие неметаллические включения содержат сплавы, отражение трещин на поверхности сплавов и т. д. На рисунке 3 приведена микрофотография чугуна, где ясно видны отдельные включения графита.

/>

Рис. 3. Графит в чугуне (темные включения):

а-крупнопластинчатый графит в обычном сером чугуне; б-мелкопластинчатый графит в модифицированном сером чугуне (модификация 0.15%); в-шаровидные графитовые включения в чугуне, модифицированном магнием (×100).

Металломикроскоп в настоящее время является одним из приборов любой лаборатории, где изучают свойства различных металлов и сплавов.

Строение металлов

На рисунке 4 представлена схема образования зернистой структуры металла при его застывании.

Рис. 4. Схема роста кристаллов в застывающем расплаве:

а-образуются зародыши; б-растут кристаллы; в-кристаллы начинают теснить друг друга; г-отдельные зерна сращиваются.

Вещества, входящие в состав стали, имеют различную температуру плавления, а, следовательно, и затвердевания. Например, чистое железо становится твердым уже при температуре 1539° С, а в соединении с серой или другими элементами температура затвердевания более низкая.

Поэтому слой металла, затвердевающий в первую очередь, состоит из наиболее тугоплавких элементов, например, железа и углерода. Такие примеси, как сера и фосфор, дают более легкоплавкие сплавы и затвердевают в последнюю очередь.

Сера и фосфор — вредные примеси потому что их присутствие значительно уменьшает прочность сплава, делает его хрупким и малопригодным для изделий.

При затвердевании сплава более легкоплавкие соединения железа с серой и фосфором концентрируются в верхней части слитка и застывают в последнюю очередь, поэтому сплав железа с фосфором и серой собирается в верхней части слитка.

Кристаллическое строение металлов и сплавов — Справочник металлиста

Кристаллическое строение металлов и сплавов

Металлы — один из самых распространенных веществ в материальной культуре человека.

Тысячелетиями медь, железо, серебро и золото были основным материалом для производства оружия, инструментов, ответственных частей транспорта и механизмов, деталей домашней утвари и украшений.

В XIX веке, с освоением технологии получения чугуна, металлы пришли в строительство и станкостроение. XX век был веком металлов.

Металлы

В нашу жизнь вошли алюминий, титан, бор и многие более редкие металлы. Используя их, человечество шагнуло в небо, космос и глубины океана. Металлы сделали возможным массовое производство домашней бытовой техники.

В конце XX века пластмассы и композитные вещества ощутимо потеснили металлы с лидирующих позиций.

Основные характеристики металлов — прочность, упругость и пластичность определяются их физико-химическими свойствами и атомным строением.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.