Медные сплавы основные виды

Медные сплавы основные виды

Медные сплавы основные виды

Медь – один из самых первых металлов, которые освоил человек. В природе она встречается в качестве самородков, имеющих крупные размеры. С незапамятных времен ее использовали как сплав с оловом, называемый бронзой, для изготовления оружия, предметов домашней утвари и украшений. Такое активное применение металла объясняется простотой обработки.

Физические и механические свойства меди

Медь – это металл красно-розового цвета с золотистым отливом, занимающий в таблице химических элементов 29-е место и имеющий плотность 8,93 кг/м3. Удельный вес меди составляет 8,93 г/см3, температура кипения – 2657, а плавления – 1083 градусов по Цельсию.

Этот металл имеет высокую пластичность, мягкость и тягучесть. Располагая высокой вязкостью, он отлично куется. Медь относится к достаточно тяжелым и прочным металлам. В чистом виде она хорошо проводит тепло и электричество (уступает только серебру).

Химические характеристики, как и механические, магнитные и физические свойства, такие как пластичность, вязкость, удельный вес меди, имеют актуальное значение. Металл обладает малой химической активностью. При небольшой влажности и нормальной температуре у нее высокая коррозийная устойчивость. При нагревании окисляется, образуя оксиды.

Во влажной среде, содержащей углекислый газ, медная поверхность покрывается зеленоватой пленкой, содержащей оксид и карбонат металла. Медь вступает в реакцию с галогенами, образуя соли, при комнатной температуре. Легко взаимодействует с серой и селеном. Прекрасно растворяется в азотной и подогретой концентрированной серной кислоте.

Без доступа кислорода с разбавленной серной и соляной кислотой не реагирует.

Значение этой величины, содержащееся в специальной таблице, составляет 8,93*103 кг/м3. Удельный вес меди – не менее важная величина, характеризующая металл. Он составляет, как уже было сказано 8,93 г/см3.

Получается, что значение величин параметров плотности и удельного веса для данного металла совпадают, что не характерно для других материалов. От плотности материала зависит вес изделия, изготовленного из него. Для расчетов массы будущей детали обычно пользуются удельным весом, а не плотностью.

Удельный вес металла

Эта величина, как и плотность, является важным показателем различных материалов, который определяют по имеющимся таблицам. По величине удельного веса меди и ее сплавов можно выгодно подобрать соответствующие металлы для изготовления изделия с заданными параметрами.

Такие расчеты обычно проводят на стадии проектирования. Удельный вес как физическая величина вычисляется отношением веса вещества к его объему. Не следует путать эту величину с плотностью, как массу с весом.

Зная удельный вес меди или сплава, всегда можно вычислить массу изделия из данного материала.

Основные медные сплавы, используемые в промышленности

По технологическому процессу изготовления медные сплавы делятся на литейные и деформируемые, а в зависимости от химического состава – на бронзы и латуни. В последней основой является медь и цинк, могут быть добавлены и другие элементы. Бронзы – это сплав меди (удельный вес 8,93 г/см3) с другими металлами. Выбор легирующего компонента зависит от конкретного использования изделия.

По содержанию основного компонента медное литье бывает следующих видов:

  • Оловянная бронза. При производстве применяют закалку и старение для увеличения пластичности и прочности.
  • Алюминиевая бронза. Обладает антикоррозийными свойствами, отлично деформируется.
  • Свинцовый сплав. Имеет превосходные антифрикционные свойства.
  • Латунь. Может состоять из двух или нескольких компонентов.
  • Медно-никелевый сплав, содержащий цинк. По свойствам и внешнему виду напоминает мельхиор.
  • Сплав меди с железом. Основное его отличие – высокая пористость.

Удельный вес электротехнической меди

Такой она получается после очистки от примесей. Самое малое содержание каких-либо металлов в ней значительно снижает ее электропроводность. Так, например, содержание 0,02 % алюминия понижает проводимость до 10 %, несмотря на то, что этот металл неплохо проводит электрический ток. Самыми важными характеристиками материала являются:

  • удельный вес меди;
  • сопротивление электрическое;
  • температура плавления.

Для нужд электротехники используют технически чистый металл, который содержит от 0,02 до 0,04 % кислорода, а изделия с высокой проводимостью тока изготавливают из особой, бескислородной меди. Для электротехнических изделий (обмотки трансформаторной, провода, кабельной жилы, шин электротехнических) используют разные сорта металла.

Применение меди и ее сплавов в народном хозяйстве

Высокая прочность, удельный вес меди, отличная электропроводность, хорошая механическая обрабатываемость – все это позволяет использовать ее во многих сферах производства:

  • Строительная – прекрасно совмещается с кирпичом, деревом, стеклом, камнем. Имеет длительный срок службы, не боится коррозии.
  • Электротехническая – провода, кабели, электроды, шины.
  • Химическая – изготавливают детали для аппаратуры и инструменты.
  • Металлургическая – производство сплавов. Самый востребованный – латунь. Она тверже меди, хорошо куется, обладает вязкостью. Из нее штампуют различные формы и прокатывают в тонкие листы.
  • Художественная – медные чеканки, бронзовые статуи.
  • Бытовая – использование для изготовления посуды, труб.

Медные руды

В природных условиях медь чаще всего встречается в соединениях, но попадается и в виде самородков. К минералам, которые являются основными ее источниками, относятся:

  • Куприт – минерал оксидной группы.
  • Малахит – известен как поделочный камень, содержит карбонат меди. Российский малахит – углекислая медная зелень пользуется большой популярностью.
  • Азурит – синего цвета минерал, часто сращивается с малахитом, обладает высокой твердостью.
  • Медный колчедан и медный блеск – содержат сульфид меди.
  • Ковеллин – относится к сульфидным породам, первоначально был обнаружен около Везувия.

Медные руды добывают, в основном, открытым способом. В них может содержаться 0,4-1,0 % меди. По ее производству мировым лидером является Чили, дальше следуют Соединенные Штаты Америки, Россия, Канада, Казахстан.

Медь — свойства меди, сплавы и применение

Знакомство человека с медью исчисляется тысячелетиями, где ее прямым конкурентом может выступать только золото, успевшее приобрести статус благородного металла.

Свойства меди и место в жизни человека

В чистом состоянии, элемент таблицы Менделеева, именуемый Cu, встречается крайне редко. Это – пластичный металл с легким розовым оттенком. Человеку же он знаком под другим цветом: желто-красным, чаще коричнево-красным. Это связано с высокой окислительной способностью вещества. Попадая на воздух, медь покрывается тонкой оксидной пленкой, что и делает цвет металла ближе к красному.

медь в чистом виде

Первобытная тяга человека к меди основывалась на свойстве пластичности, позволяющей придавать этому металлу требуемую форму путем несложной обработки.

Медь легко поддается гравировке, нанесению резьбы, оставаясь при этом достаточно прочным. Современная ценность меди, как металла – высокие показатели проводимости: электрической и тепловой.

Подобная информация позволяет выделить основные направления поиска этого цветного металла в виде отходов и лома.

Удельный вес меди, составляющий округленно 8.9 г/см3, также полезен сборщику металлолома. Зная объем собранного лома, в частности проводов, жил, легко рассчитать его оценочный вес.

Сплавы меди

Помимо относительно чистой формы, характеризуемой ничтожным содержанием примесей, медь – составляющий элемент многих сплавов, среди которых наиболее известны:

Названия и состав сплавов меди

Медные сплавы основные виды

Сплавы меди — это соединение цветного металла с некоторыми элементами таблицы Менделеева. В процессе их формирования атомы кристаллической решетки меди замещаются атомами другого вещества. В результате образовывается новое твердое соединение. Каждое из них обладает своими физическими и химическими показателями.

Чаще всего, на основе меди получают бронзу и латунь, путем добавления цинка и олова. Новые соединения снижают цену основного металла, улучшая некоторые параметры. Идет повышение пластичности и коррозионной стойкости. Это дает возможность использовать их в некоторых отраслях промышленности.

Исторический ракурс

Согласно историческим данным, первый медный сплав появился к 7 тыс. до н.э. Позже в качестве добавки стало использоваться олово. В это время, именуемое бронзовым веком, из такого материала изготавливалось оружие, зеркала, посуда и украшения.

Технология производства менялась. Появились добавки в виде мышьяка, свинца, цинка и железа. Все зависело от требований, предъявляемых к предмету. Материал для украшений нуждался в особом подходе. Состав сплава состоял из меди, олова и свинца.

Начиная с 8 в. до н. э. в Малой Азии была разработана технология получения латуни. В это время еще не научились добывать чистый цинк. Поэтому в качестве сырья использовалась его руда. С течением времени производство медных сплавов постоянно расширялось и до сих пор находится на первых местах.

Сплавы химического элемента меди

Медь, в соединении с другими металлами, образует сплавы с новыми свойствами. В качестве основных добавок используются олово, никель или свинец. Каждый вид соединения обладает особыми характеристиками. Отдельно медь используется редко, поскольку у нее невысокая твердость.

Немного о бронзе

Бронза — название сплава меди и олова. Также в состав соединения входит кремний, свинец, алюминий, марганец, бериллий. У полученного материала показатели прочности выше, чем у меди. Он обладает антикоррозионными свойствами.

С целью улучшения характеристик в сплав добавляются легирующие элементы: титан, цинк, никель, железо, фосфор.

Существует несколько разновидностей бронзы:

  1. Деформируемые. Количество олова не превышает 6%. Благодаря этому, металл обладает хорошей пластичностью и поддается обработке давлением.
  2. Литейные. Высокая прочность позволяет использовать материал для работы в сложных условиях.

Сплав никель и медь

В этом соединении используется медь и никель. Если к этой паре добавляются другие элементы, соединения носят такие названия:

  1. Куниали. К 6–13% никеля еще добавляется 1,5–3% алюминия. Остальное медь.
  2. Нейзильбер. Содержит 20% цинка и 15% хрома.
  3. Мельхиор. Присутствует 1% марганца.
  4. Копелем. Сплав с содержанием 0,5% марганца.

Латунь

Это сплав меди с цинком. Колебание количественного содержания цинка влечет за собой изменение характеристик и цвета сплава.

Кроме этих 2 основных элементов в сплаве содержатся легирующие добавки. Их показатель составляет небольшой процент.

Латунь обладает высокими прочностными характеристиками, пластичностью и способностью противостоять коррозии. Также характеризуется немагнитными свойствами.

Физические и химические свойства сплавов

Химический состав и механические свойства медных сплавов обеспечивают им не только прочность, но и хорошую электро- и теплопроводность. Особенно это относится к латуни.

Все медные сплавы характеризуются хорошими антифрикционными свойствами. Отдельно стоит отметить бронзу.

Благодаря хорошим антифрикционным свойствам бронзы, материал идет на изготовление втулок в качестве подшипников скольжения.

Такое изделие не требует смазки, поскольку с внутреннего диаметра, по которому идет скольжение, сминаются все шероховатости. Именно это и является источником смазки.

Установка таких подшипников ведется даже на высокоточном оборудовании — координатно-расточных и координатно-шлифовальных станках.

Температура плавления меди без добавок составляет 1083 градуса. В зависимости от количества добавления цинка и олова, этот показатель меняется. Величина температуры плавления латуни составляет 900–1050 градусов, а бронзы — 930–1140 градусов.

Коррозионные свойства медных сплавов отличаются стойкостью. Связано это с тем, что медь не активный элемент. Особенно не корродируют полированные поверхности.

Коррозионная стойкость медных соединений проявляется в пресной воде и ухудшается в присутствии кислоты, которая препятствует образованию защитной оболочки.

Применение сплавов

Благодаря своим свойствам медь и ее сплавы нашли применение не только в промышленности, но и ювелирном деле.

Соединения меди также используются для изготовления следующих изделий:

  • проволоки, благодаря хорошей электропроводности;
  • труб, материал которых не вступает в реакцию с водой;
  • посуды, в которой не развиваются бактерии;
  • кровли для крыши, служащей длительное время;
  • в качестве фурнитуры для мебели.

Способы получения металла

Основные сплавы на основе меди — латунь и бронза. Их процесс производства следующий:

  1. Латунь. Предварительно идет плавка меди. Затем цинк разогревается до 100 градусов и добавка его ведется на конечной стадии получения латуни. В качестве источника тепла используется древесный уголь.
  2. Бронза. Для ее производства применяются индукционные установки. Сначала плавится медь, а потом добавляется олово.

В обоих случаях формируются слитки, поступающие в прокатный цех, где происходит их обработка давлением в горячем и холодном виде.

Плавление меди в домашних условиях

Чтобы получить сплав меди в домашних условиях, нужно изготовить самодельное оборудование для плавления. Процесс проводится следующим образом:

  1. Изготавливается из силикатного кирпича опора.
  2. Сверху укладывается сетка из металла с мелкими ячейками.
  3. Насыпается уголь и разогревается газовой горелкой. Чтобы огонь разгорелся лучше, направляется струя воздуха из пылесоса.
  4. На огонь ставится тигель с мелкими кусочками металла.
  5. По окончании процесса жидкий металл сливается в форму.

Проба плавки меди в домашних условиях
Физические свойства медных сплавов сделали их незаменимыми во многих сферах хозяйственной деятельности. Без них не обойдется самолетостроение и судостроение. Нельзя представить без такого металла и часовые механизмы. Любая конструкция, в которой имеются работающие в паре детали, нуждается в антифрикционном материале.

Сплавы меди: названия, состав, химические и физические свойства | мк-союз.рф

Медные сплавы основные виды

Сплавы меди — это соединение цветного металла с некоторыми элементами таблицы Менделеева. В процессе их формирования атомы кристаллической решетки меди замещаются атомами другого вещества. В результате образовывается новое твердое соединение. Каждое из них обладает своими физическими и химическими показателями.

Чаще всего, на основе меди получают бронзу и латунь, путем добавления цинка и олова. Новые соединения снижают цену основного металла, улучшая некоторые параметры. Идет повышение пластичности и коррозионной стойкости. Это дает возможность использовать их в некоторых отраслях промышленности.

Примеси в медных сплавах

Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.

Образующие с медью твердые растворы

К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность.

К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1.

Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.

Не растворяющиеся в меди примеси

Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.

Примеси, образующие с медью хрупкие химические соединения

К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.

Марки меди и их применение

Стандарты для медных сплавов

Государственными стандартами оговариваются правила маркировки меди и ее сплавов, обозначение которых соответствует определенной структуре.

О том, что перед нами одна из марок меди, свидетельствует буква «М» в ее обозначении.

После начальной буквы в маркировке меди и ее сплавов следуют цифры (от 0 до 3), условно обозначающие массовую долю основного металла в их составе (например, медь М3).

После цифр следуют прописные буквы, по которым можно определить, каким способом получили данную марку меди. Из технологических способов получения меди различают следующие:

  • катодные (к);
  • метод раскисления, предполагающий невысокое содержание остаточного фосфора (р);
  • метод раскисления, предполагающий высокое содержание остаточного фосфора (ф);
  • без использования раскислителей – бескислородные (б).

Примеры маркировок таких марок и сплавов меди могут выглядеть следующим образом: М2р, М1б.

Химический состав меди ГОСТ 859-2014

Целый ряд марок меди, отличающихся уникальными характеристиками, активно используют в различных отраслях промышленности.

  • М0 – эта марка применяется для производства токопроводящих элементов и для добавления в сплавы, отличающиеся высокой чистотой.
  • М1 — из этой марки также производят токопроводящие элементы, прокат различного профиля, бронзы, детали для криогенной техники, электроды для сварки меди и чугуна, проволоку и прутки (применяемые для выполнения сварочных работ под слоем флюса и в среде инертных газов), расходные материалы для выполнения газовой сварки деталей из меди, не испытывающих значительных нагрузок при эксплуатации.
  • М2 – данная марка позволяет получать изделия, хорошо обрабатываемые давлением. Медь М2 также используют для деталей криогенной техники.
  • МЗ — детали из данной марки металла производят прокатным методом.

Пространственное распределение запасов меди в России

ГОСТ 859-2001, в котором оговаривались требования и характеристики медных сплавов, в 2014 году был заменен новым государственным стандартом (859-2014), что зафиксировано соответствующим Приказом Федерального агентства по техническому регулированию и метрологии. Новый стандарт по основным своим пунктам практически идентичен ГОСТу 859-2001.

ГОСТ 859-2001 о марках меди

Данный документ государственного стандарта относится к литым и деформированным полуфабрикатам из меди, а также к меди, изготовленной в виде катодов.

Медь и ее сплавы

Медь относится к группе цветных металлов, наиболее широко применяемых в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева — 29, атомный вес А = 63,57.

Медь имеет гранецентрированную кубическую решетку (ГЦК) с периодом а = 3,607 Å. Удельный вес меди g = 8,94 г/см3, температура плавления — 1083 0С.

Чистая медь обладает высокой тепло — и электропроводностью. Удельное электрическое сопротивление меди 0,0175 мкОм×м, теплопроводность l = 395 Вт/(м×град).

Предел прочности sв = 200…250 МПа, твердость 85…115 НВ, относительное удлинение d = 50 %, относительное сужение y = 75 %.

Медь — немагнитный металл.

Она обладает хорошей технологичностью: обрабатывается давлением, резанием, легко полируется, хорошо паяется и сваривается, имеет высокую коррозионную стойкость. Основная область применения — электротехническая промышленность.

Электропроводность меди существенно понижается при наличии даже очень небольшого количества примесей.

Поэтому в качестве проводникового материала применяют в основном особо чистую медь М00 (99,99 %), электролитическую медь М0 (99,95 %), М1 (99,9 %).

Марки технической меди М2 (99,7 %), М3 (99,5 %), М4 (99,0 %).

В зависимости от механических свойств различают медь твердую, нагартованную (МТ) и медь мягкую, отожженную (ММ).

Вредными примесями в меди являются висмут, свинец, сера и кислород.

Сера и кислород снижают пластичность меди за счет образования хрупких химических соединений Сu2O и Сu2S.

В качестве конструкционного материала технически чистую медь применяют редко, так как она имеет низкие прочностные свойства, твердость.

Основными конструкционными материалами на основе меди являются сплавы латуни и бронзы.

Для маркировки медных сплавов используют следующее буквенное обозначение легирующих элементов:

  • О — олово; Ц — цинк; Х — хром;
  • Ж — железо; Н — никель; С — свинец;
  • К — кремний; А — алюминий; Ф — фосфор;
  • Мц — марганец; Мг – магний; Б – бериллий.

Латуни

Латуни — это медные сплавы, в которых основным легирующим элементом является цинк.

В зависимости от содержания цинка латуни промышленного применения бывают:

  1. однофазные a — латуни, содержащие до 39 % цинка (это предельная растворимость цинка в меди);
  2. двухфазные (a+b|)- латуни, содержащие до 46 % цинка;
  3. однофазные b|- латуни ,содержащие до 50 % цинка.

Однофазные a- латуни пластичны, хорошо обрабатываются резанием, давлением при температурах ниже 300 0С и выше 700 0С (в интервале от 300 0С до 700 0С — зона хрупкости).

С увеличением содержания цинка прочность латуней повышается.

В латунях b|- фаза представляет собой упорядоченный твердый раствор на базе электронного соединения СuZn с решеткой ОЦК, она хрупкая и прочная.

Поэтому, чем больше в латунях b|- фазы, тем они прочнее и менее пластичны. Практическое применение имеют латуни с содержанием цинка до 42…43 %.

Латуни, обрабатываемые давлением, маркируются буквой Л (латунь), после которой ставятся буквенные обозначения легирующих элементов; цифры, следующие за буквами, указывают содержание меди и количество соответствующего легирующего элемента в процентах. цинка определяется по разности от 100 %.

Например, латунь Л62 содержит 62 % Сu и 38 % Zn. Литейные латуни маркируются буквой Л, после которой ставится содержание цинка и других легирующих элементов в процентах. Количество меди определяется по разности от 100 %. Например, латунь ЛЦ36Мц20С2 содержит 36 % Zn, 20 % Mn, 2 % Pb и 42 % Сu.

К однофазным a — латуням относятся Л96 (томпак), Л80 (полутомпак), Л68, имеющая наибольшую пластичность (d = 56 %).

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.