Зависимость сопротивления меди от температуры

Удельное электрическое сопротивление, проводимость и температурный коэффициент материалов

Зависимость сопротивления меди от температуры

Удельное сопротивление — прикладное понятие в электротехнике. Оно обозначает то, какое сопротивление на единицу длины оказывает материал единичного сечения протекающему через него току — другими словами, каким сопротивлением обладает провод миллиметрового сечения длиной один метр. Это понятие используется в различных электротехнических расчетах.

Важно понимать различия между удельным электрическим сопротивлением постоянному току и удельным электросопротивлением переменному току.

В первом случае сопротивление вызывается исключительно действием постоянного тока на проводник.

Во втором случае переменный ток (он может быть любой формы: синусоидальной, прямоугольной, треугольной или произвольной) вызывает в проводнике дополнительно действующее вихревое поле, которому также создается сопротивление.

Физическое представление

В технических расчетах, предполагающих прокладку кабелей различных диаметров, используются параметры, позволяющие рассчитать необходимую длину кабеля и его электрические характеристики. Одним из основных параметров является удельное сопротивление. Формула удельного электрического сопротивления:

ρ = R * S / l, где:

  • ρ — это удельное сопротивление материала;
  • R — омическое электросопротивление конкретного проводника;
  • S — поперечное сечение;
  • l — длина.

Размерность ρ измеряется в Ом•мм2/м, или, сократив формулу — Ом•м.

Значение ρ для одного и того же вещества всегда одинаковое. Следовательно, это константа, характеризующая материал проводника. Обычно она указывается в справочниках. Исходя из этого уже можно проводить расчет технических величин.

Важно сказать и об удельной электрической проводимости. Эта величина является обратной удельному сопротивлению материала, и используется наравне с ним. Ее также называют электропроводностью.

Чем выше эта величина, тем лучше металл проводит ток. Например, удельная проводимость меди равна 58,14 м/(Ом•мм2). Или, в единицах, принятых в системе СИ: 58 140 000 См/м.

(Сименс на метр — единица электропроводности в СИ).

Удельное сопротивление различных материалов

Говорить об удельном сопротивлении можно только при наличии элементов, проводящих ток, так как диэлектрики обладают бесконечным или близким к нему электросопротивлением. В отличие от них, металлы — очень хорошие проводники тока.

Измерить электросопротивление металлического проводника можно с помощью прибора миллиомметра, или еще более точного — микроомметра. Значение измеряется между их щупами, приложенными к участку проводника.

Они позволяют проверить цепи, проводку, обмотки двигателей и генераторов.

Металлы разнятся между собой по способности проводить ток. Удельное сопротивление различных металлов — параметр, характеризующий это отличие. Данные приведены при температуре материала 20 градусов по шкале Цельсия:

  • Серебро (ρ = 0,01498 Ом•мм2/м);
  • Алюминий (ρ = 0,027);
  • Медь (ρ = 0,01721);
  • Ртуть (ρ = 0,94);
  • Золото (ρ = 0,023);
  • Железо (ρ = 0,1);
  • Вольфрам (ρ = 0,0551);
  • Латунь (ρ = 0,026…0,109);
  • Бронза (ρ = 0,095);
  • Сталь (ρ = 0,103…0,14);
  • Сплав никеля, марганца, железа и хрома — нихром (ρ = 1,051…1,398).

Параметр ρ показывает, каким сопротивлением будет обладать метровый проводник с сечением 1 мм2. Чем больше это значение, тем больше электросопротивление будет у нужного провода определенной длины.

Наименьшее ρ, как видно из списка, у серебра, сопротивление одного метра из этого материала будет равно всего 0,015 Ом, но это слишком дорогой металл для использования его в промышленных масштабах.

Следующим идет медь, которая в природе встречается гораздо чаще (не драгоценный, а цветной металл). Поэтому медная проводка очень распространена.

Применение медных проводников

Медь является не только хорошим проводником электрического тока, но и очень пластичным материалом. Благодаря этому свойству медная проводка лучше укладывается, она устойчива к изгибам и растяжению.

Медь очень востребована на рынке. Из этого материала производят множество различных изделий:

  • Огромное многообразие проводников;
  • Автозапчасти (например, радиаторы);
  • Часовые механизмы;
  • Компьютерные составляющие;
  • Детали электрических и электронных приборов.

Удельное электрическое сопротивление меди является одним из лучших среди проводящих ток материалов, поэтому на ее основе создается множество товаров электроиндустрии. К тому же медь легко поддается пайке, поэтому очень распространена в радиолюбительстве.

Высокая теплопроводность меди позволяет использовать ее в охлаждающих и обогревающих устройствах, а пластичность дает возможность создавать мельчайшие детали и тончайшие проводники.

Зависимость электропроводности от температуры

Проводники электрического тока бывают первого и второго рода. Проводники первого рода — это металлы. Проводники второго рода- это проводящие растворы жидкостей. Ток в первых переносят электроны, а переносчики тока в проводниках второго рода —ионы, заряженные частицы электролитической жидкости.

Говорить о проводимости материалов можно только в контексте температуры окружающей среды. При более высокой температуре проводники первого рода увеличивают свое электросопротивление, а второго, напротив, уменьшают.

Соответственно, существует температурный коэффициент сопротивления материалов. Удельное сопротивление меди Ом м возрастает при увеличении нагрева.

Температурный коэффициент α тоже зависит только от материала, эта величина не имеет размерности и для разных металлов и сплавов равна следующим показателям:

  • Серебро — 0,0035;
  • Железо — 0,0066;
  • Платина — 0,0032;
  • Медь — 0,0040;
  • Вольфрам — 0,0045;
  • Ртуть — 0,0090;
  • Константан — 0,000005;
  • Никелин — 0,0003;
  • Нихром — 0,00016.

Определение величины электросопротивления участка проводника при повышенной температуре R (t), вычисляется по формуле:

R (t) = R (0) · [1+ α·(t-t (0))], где:

  • R (0) — сопротивление при начальной температуре;
  • α — температурный коэффициент;
  • t — t (0) — разность температур.

Например, зная электросопротивление меди при 20 градусах Цельсия, можно вычислить, чему оно будет равно при 170 градусах, то есть при нагреве на 150 градусов. Исходное сопротивление увеличится в [1+0,004·(170−20)] раз, то есть в 1,6 раз.

При увеличении температуры проводимость материалов, напротив, уменьшается. Так как это величина, обратная электросопротивлению, то и уменьшается она ровно во столько же раз. Например, удельная электропроводность меди при нагреве материала на 150 градусов уменьшится в 1,6 раз.

Существуют сплавы, которые практически не изменяют своего электросопротивления при изменении температуры. Таков, к примеру, константан. При изменении температуры на сто градусов его сопротивление увеличивается всего на 0,5%.

Если проводимость материалов ухудшается с нагревом, она улучшается с понижением температуры. С этим связано такое явление, как сверхпроводимость. Если понизить температуру проводника ниже -253 градусов Цельсия, его электросопротивление резко уменьшится: практически до нуля.

В связи с этим падают затраты на передачу электрической энергии. Единственной проблемой оставалось охлаждение проводников до таких температур.

Однако в связи с недавними открытиями высокотемпературных сверхпроводников на базе оксидов меди, охлаждать материалы приходится уже до приемлемых значений.

Удельное сопротивление меди

Зависимость сопротивления меди от температуры

Сравнительно небольшое удельное сопротивление меди – важный, но не единственный положительный фактор.

Широкое применение этого материала объясняется разумной стоимостью, устойчивостью к неблагоприятным внешним воздействиям.

Из него несложно создавать качественные изделия необходимой формы, которые без дополнительной защиты сохраняют функциональность при длительной эксплуатации в сложных условиях.

Из меди создают разные виды кабельной продукции

Медь – основной материал для проводников

Квалифицированный выбор подходящего материала сопровождается комплексной оценкой нескольких факторов. Медный проводник не повреждается коррозией, потому что на поверхности образуется защитный слой из окислов.

Структурная целостность сохраняется при малом радиусе поворота, после многократных изгибов. Отмеченные параметры пригодятся для оснащения помещений с повышенной влажностью и прокладки линий сложной конфигурации.

Тем не менее, главным преимуществом является малое сопротивление проводов из меди. Кроме улучшения токопроводимости с одновременным снижением потерь при передаче энергии, следует отметить уменьшение веса и размеров кабельной продукции, по сравнению с альтернативными вариантами.

Удельное сопротивление чистых металлов при низких температурах

Расчет падения напряжения в кабеле

Колебательные процессы в молекулярной решетке препятствуют свободному перемещению электронов. Этим объясняется увеличение сопротивления по мере роста температуры.

Линейная зависимость наблюдается от небольшой положительной температуры, вплоть до точки начала плавления. Соответствующий фазовый переход сопровождается резким увеличением электрического сопротивления.

Разумеется, подобный режим после разрушения не является рабочим.

Удельное сопротивление натрия

Теоретические показатели «а» подтверждаются результатами эксперимента «б». Если структуру чистого металла исказить примесями (загрязнениями, компонентами сплавов), произойдет беспорядочное распределение носителей электрического заряда. Это, в свою очередь, увеличит потери в цепи (сопротивление).

Таблица сопротивления металлов

Чтобы убедиться в преимуществах меди, надо сделать соответствующий сравнительный анализ. Ниже приведены значения сопротивлений металлов в сводной таблице.

Что такое электрическое сопротивление

Основные электрические параметры проводников, созданных из разных материалов

МатериалУдельное сопротивление в Омах на метр, замеренное при комнатной температуре (+20°C)Удельная электропроводность при аналогичных условиях, в сименсах на метр
Медь1,68х10-35,96х107
Серебро1,59х10-36,3х107
Золото2,44х10-34,1х107
Алюминий2,82х10-33,5х107
Вольфрам5,6х10-31,79х107
Железо1х10-71х107
Платина1,06х10-79,43х106
Литий9,28х10-81,08х107

Важно! Малого сопротивления проводника из железа недостаточно для широкого применения соответствующих изделий на практике. Активное окисление провоцирует быстрое разрушение.

Таблица удельных сопротивлений проводников

В некоторых ситуациях с расходами не считаются. Военную и космическую технику создают с применением проводников из драгоценных металлов. Такие решения помогают уменьшить сечение и вес, повысить стойкость к радиационным и другим особым воздействиям.

Для изготовления серийных изделий бытового и промышленного назначения применяют более доступные по цене материалы.

Данные для расчета электрических параметров проводников с учетом изменения температуры

МатериалУдельное сопротивление (в Ом на мм кв./ м), замеренное при комнатной температуре (+0°C)Поправочный температурный коэффициент (ПК)
Медь0,01760,004
Алюминий0,02780,0045
Сталь0,130,0063
Никелин0,43-0,450,0072
Латунь0,040,002
Нихром0,980,0003
Вольфрам0,06120,00047

Применение нержавеющей стальной проволоки помогает увеличить прочность при одновременной оптимизации себестоимости. Для улучшения антикоррозийных свойств применяют специальные добавки. Они повышают сопротивление проводника из стали почти в 10 раз, по сравнению с медным аналогом.

В любом случае особое значение имеют конкретные условия в процессе использования, а также назначение изделий. Никель, например, проявляет ферромагнитные свойства при чрезвычайно низких температурах ниже порогового значения «точки Кюри» (-358 0°C). Кремний, который применяют для изготовления микросхем и транзисторов, обладает особыми параметрами полупроводника.

Сравнение проводимости меди и алюминия

Первый вывод можно сделать после изучения табличных данных. Сопротивление алюминия примерно на 80% выше, по сравнению с медью. В такой же пропорции хуже проводимость. Но для корректного анализа необходимо изучить дополнительно следующие факты:

  • алюминий легче, но для получения аналогичных электрических параметров понадобится увеличить поперечное сечение (толщину проводника);
  • медные изделия (многожильные кабели) не повреждаются неоднократным сгибанием;
  • удельное сопротивление алюминия изменяется больше при повышении/ снижении температуры;
  • пленка из окислов на его поверхности образуется быстрее, поэтому для надежности (долговечности) современную проводку делают из меди.

Медный и алюминиевый кабель соединяют через стальной переходник, чтобы предотвратить электрохимическую коррозию

Применение электропроводности материалов

Наличие отмеченных свойств используют не только в инженерных энергетических сетях. Хорошая электропроводность позволяет передавать на большие расстояния информационные сигналы без искажений.

Сохранение высокой амплитуды уменьшает требования к усилительным трактам, снижает общую себестоимость систем.

Минимизация потерь пригодится в электролизных установках, при создании контактных групп и обмоток двигателей.

Важно! Во всех перечисленных примерах, кроме общего повышения эффективности, можно рассчитывать на предотвращение перегрева.

Расчет сопротивления

Для коррекции температурных изменений в последнем столбце второй таблицы приведены отдельные множители по каждой позиции. Расчет выполняют по формуле RT=Rn*(1+ПК*Т), где приведенные символы означают:

  • RТ – электрическое сопротивление в Омах при определенной температуре;
  • Rn – сопротивление проводника при нулевой температуре;
  • ПК – поправочный коэффициент;
  • Т – эксплуатационная температура в градусах Цельсия.

Понятие электрического сопротивления

Этим термином называют свойство создавать препятствия прохождению в цепи электрического тока. Связь между физическими величинами описывается классической формулой R=U/I (обозначения сопротивления, напряжения и силы тока, соответственно). Движение электронов совершается под воздействием электромагнитного поля, разницы потенциалов.

Повышает сопротивление металлов любое искажение кристаллической структуры молекулярной решетки. Данная причина объясняет сильную зависимость параметра от чистоты материала и температуры. Так, стандарты для трубной продукции допускают применение различных сплавов.

Электротехническую медь (марка М006) создают с контролируемым количеством посторонних примесей не более 0,1%.

Квалифицированное применение этого материала предваряется оценкой всех значимых факторов. Кроме себестоимости, уточняют:

  • особенности механической и других видов обработки;
  • стабильность электрических параметров в определенных условиях эксплуатации;
  • стойкость к внешним воздействиям, долговечность.

В некоторых ситуациях значительные начальные инвестиции оправданы продленным сроком службы, надежностью.

Удельное сопротивление меди: чему равно, таблица сопротивления материалов

Зависимость сопротивления меди от температуры

Направленное движение частиц в любом веществе создает электрический ток за счет образования разности потенциалов. Индивидуальные физические характеристики каждого вещества определяют влияние на прохождение тока и оцениваются как электрическое сопротивление.

Суть явления

Это величина, характерная для проводника, имеющего длину 1 метр и площадь поперечного сечения 1 квадратный метр/миллиметр. Ее обозначают греческой буквой ρ. Разным материалам свойственны разные удельные сопротивления.

Вместе с тем сопротивление проводника будет меняться в прямой пропорциональности к длине и в обратной к площади поперечного сечения. То есть чем больше длина проводника, тем оно выше, но чем больше толщина, тем оно ниже.

Длина

Единицы измерения

Практическое значение в технике имеет единица, равная миллионной доле ома, помноженного на метр (Ом-м), так как даже встретить провод с сечением, равным одному квадратному метру и более, довольно проблематично. Поэтому в измерениях обычно применяют микроом-метр (мкОм-м):

1 мкОм-м = 1×10-6 Ом-м = 1 Ом-мм2/м

Формула расчета удельного сопротивления

Расчет производят так:

ρ = (R * S) / L

, где R — сопротивление проводника (Ом); L — длина проводника (м); S — сечение проводника (мм2).

Штангенциркуль

Таким образом ρ однокомпонентного отрезка провода, длина которого равняется 1 метру, а площадь поперечного сечения — 1 квадратному миллиметру, при R, равном 1 ому, составит 1 Ом-мм2/м.

Таблица удельного электрического сопротивления некоторых металлов

Вид проводаρ при 20℃, Ом-м
Серебряный1,59×10⁻⁸
Медный1,67×10⁻⁸
Золотой2,35×10⁻⁸
Алюминиевый2,65×10⁻⁸
Вольфрамовый5,65×10⁻⁸
Никелевый6,84×10⁻⁸
Железный9,7×10⁻⁸
Платиновый1,06×10⁻⁷
Стальной1,6×10⁻⁷
Свинцовый2,06×10⁻⁷
Дюралюминиевый4,0×10⁻⁷
Нихромовый1,05×10⁻⁶

Удельное сопротивление абсолютно независимо от формы и размеров проводника, однако варьируется в широком диапазоне при отклонении температуры от принятого за стандартное значения, равного 20 градусам Цельсия. Практическим электротехническим путем доказано, что увеличение температуры повышает сопротивляемость металлов течению тока, с обратной стороны — вместе со снижением температуры она снижается. Примерно подсчитать, насколько существенным будет изменение, можно с учетом того, что всем металлам присущ почти одинаковый уровень прироста убыли данной величины, в среднем составляющий 0,4% на 1°С.

График сопротивления

Если же данный показатель нужно определить точно, то можно воспользоваться этой формулой:

ρ = ρ0 x (1 + α x (t — t0))

, где ρ и ρ0 — соответственно удельные сопротивления при температурах t и t0 (20°С, табличное значение), α — температурный коэффициент сопротивления.

Вид проводаα
Никелевый0,005866
Железный0,005671
Молибденовый0,004579
Вольфрамовый0,004403
Алюминиевый0,004308
Медный0,004041
Серебряный0,003819
Платиновый0,003729
Золотой0,003715
Цинковый0,003847
Стальной0,003
Нихромовый0,00017

Так, к примеру, найдя в таблицах удельное сопротивление меди при 20 градусах Цельсия и ее температурный коэффициент, можно вычислить, что при нагреве до 100℃ ее сопротивление вырастет на 32%. Практически то же самое будет происходить с удельным сопротивлением алюминиевого кабеля с тем же коэффициентом (0,004). А вот удельное сопротивление стали повысится менее значительно — на 24%.

Нагрев

С увеличением температуры проводник насыщается тепловой энергией, передающейся всем атомам вещества. Этим обуславливается повышение интенсивности их теплового движения.

Последний фактор и приводит к повышению сопротивляемости движению свободных электронов в определенном направлении, поскольку возрастает вероятность встречи свободных электронов с атомами.

Когда температура снижается, меньшее количество атомов может препятствовать направленному движению электронов, следовательно, происходит обратное.

В результате колоссального спада температуры возникает интереснейшее явление, называемое «сверхпроводимостью металлов»: сопротивляемость уменьшается до нуля в условиях, близких к абсолютному нулю (-273,15℃). В таких кондициях атомы металла замирают на своих позициях, и электроны движутся без каких-либо препятствий.

Сверхпроводимость

Удельное сопротивление меди различных марок

Круглая медная проволока для проводов, кабелей и так далее бывает мягкой (марка ММ), твердой (марка МТ) и марки МС. Ее выпускают в диапазоне диаметров 0,02-9,42 мм. Удельное электрическое сопротивление проволоки постоянному току при 20℃ соответствует значениям, приведенным в таблице:

Диаметр проволоки, ммρ при 20℃, мкОм-м
МММТ, МС
Меньше 1,000,018
1,0-2,440,017240,0178
2,50 и больше0,0177

Преимущества меди в плане проводимости дают повод обширно применять ее на производстве проводников. Вместе с тем медь — относительно дорогой и дефицитный материал, поэтому ее все чаще заменяют другими металлами, включая алюминий.

Провод

Сплавы меди с оловом, хромом, кадмием и другие называют бронзами. Бронза при правильном подоборе состава очень выгодно отличается от чистой меди по части механических свойств.

Зависимость сопротивления меди от температуры

Зависимость сопротивления меди от температуры

12.01.2018

Про закон Ома многие слышали, но не все знают, что это такое. Изучение начинается со школьного курса физики. Более подробно проходят на физфаке и электродинамике. Рядовому обывателю эти знания маловероятно пригодятся, но они необходимы для общего развития, а кому-то для будущей профессии.

С другой стороны, элементарные знания об электричестве, его устройстве, особенностей в домашних условиях помогут предостеречь себя от беды. Недаром закон Ома называют основным законом электричества.

Домашнему мастеру нужно обладать знаниями в области электричества, чтобы не допустить перенапряжения, что может повлечь увеличению нагрузки и возникновению пожара.

Понятие электрического сопротивления

Зависимость между основными физическими величинами электрической цепи – сопротивлением, напряжением, силой тока открыл немецкий физик Георг Симон Ом.

Электросопротивление проводника это величина, характеризующая его противостояние электрическому току.

Иными словами, часть электронов под действием электрического тока на проводник покидает свое место в кристаллической решетке и направляется к положительному полюсу проводника.

Часть электронов остается в решетке, продолжая вращаться вокруг атома ядра. Данные электроны и атомы образуют электросопротивление, препятствующее продвижению высвободившихся частиц.

Вышеописанный процесс применим ко всем металлам, но сопротивление в них происходит по-разному. Это связано с разностью размеров, форм, материала, из которого состоит проводник. Соответственно размеры кристаллической решетки имеют неодинаковую форму у разных материалов, следовательно, электросопротивление продвижению по ним тока происходит не одинаково.

Из данного понятия вытекает определение удельного сопротивления вещества, что является индивидуальным показателем для каждого металла в отдельности. Удельное электрическое сопротивление (УЭС) это физическая величина, обозначающаяся греческой буквой ρ и характеризующаяся способностью металла воспрепятствовать прохождению электричества через него.

Медь – основной материал для проводников

УЭС вещества рассчитывается по формуле, где одним из важных показателей является температурный коэффициент электросопротивления. Таблица содержит значения УЭС трех известных металлов в диапазоне температур от 0 до 100°C.

Если взять показатель УЭС железа, как одного из доступных материалов, равного 0,1 Ом, то для 1 Ом понадобится 10 метров. Самым низким электросопротивлением обладает серебро, для его показателя 1 Ом выйдет 66,7 метров. Значительная разница, но серебро является дорогостоящим металлом, использование которого повсеместно нецелесообразно.

Следующим по показателям идет медь, где на 1 Ом необходимо 57,14 метров. В связи с доступностью, стоимостью по сравнению с серебром, медь является одним из популярных материалов для использования ее в электрических сетях.

Низкое удельное сопротивление медного провода или сопротивление медной проволоки дает возможность использовать медный проводник во многих отраслях науки, техники, а также в промышленном и бытовом назначении.

Величина удельного сопротивления

УЭС величина непостоянная, она изменяется в зависимости от следующих факторов:

  • Размер. Чем больше диаметр проводника, тем больше электронов он через себя пропускает. Следовательно, чем его размер меньше, тем больше УЭС.
  • Длина. Электроны проходят через атомы поэтому чем длиннее проволока, тем больше приходится преодолевать через них электронам. При расчетах необходимо учитывать длину, размер провода, потому что чем длиннее, тоньше провод, тем его УЭС больше и наоборот. Не рассчитав нагрузку используемого оборудования можно привести к перегреванию провода и возгоранию.
  • Температура. Известно, что температурный режим имеет большое значение на поведение веществ по-разному. Металл, как ничто другое, изменяет свои свойства при разных температурах. Удельное сопротивление меди напрямую зависит от температурного коэффициента сопротивления меди и при нагревании увеличивается.
  • Коррозия. Образование коррозии существенно увеличивает нагрузку. Происходит это по причине воздействия окружающей среды, попадания влаги, соли, грязи, т. п. проявлений. Рекомендуется изолировать, предохранять все соединения, клеммы, скрутки, устанавливать защиту для оборудования, находящегося на улице, своевременно проводить замену поврежденных проводов, узлов, агрегатов.

Зависимость сопротивления меди от температуры — Справочник металлиста

Зависимость сопротивления меди от температуры

> Теория > Удельное сопротивление меди

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.

Формула вычисления сопротивления проводника

Что такое электрический ток

На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

Определение. Электрический ток – это направленное движение заряженных частиц.

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:

p=(R*S)/l.

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

Удельное сопротивление металлов

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

R=(p*l)/S.

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

g=1/R.

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

Сопротивление проводов

Выбор сечения кабеля

Сопротивление медного провода

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

P=I²*R.

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

Таблица выбора сечения провода по допустимому нагреву

Допустимые потери напряжения

Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

U=I*R.

Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.

Максимально допустимая длина кабеля данного сечения

Электросопротивление других металлов

Сопротивление тока: формула

Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

  • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
  • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
  • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
  • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте.

В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода.

Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

Справка. Литцендрат – это многожильный провод, каждая жила в котором изолирована от остальных. Это делается для увеличения поверхности и проводимости в сетях высокой частоты.

Удельное сопротивление меди, гибкость, относительно невысокая цена и механическая прочность делают этот металл, вместе с алюминием, самым распространенным материалом для изготовления проводов.

Электрическое сопротивление и проводимость

26 марта 2013.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.

Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду.

Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Как поределить сопротивление медного провода

Зависимость сопротивления меди от температуры

Когда производится расчет сечения кабеля, то в частном домостроении или в квартирах для определения этой величины используются два показателя: потребляемая мощность сети и сила тока, проходящая по разводке. Сопротивление в данном случае роли не играет. Все дело в небольшой длине проводов.

А вот если длина линии электропередач достаточно большая, то без определения данного показателя здесь не обойтись. К примеру, на начале участка напряжение будет 220-2240 вольт, а на конце уже заниженное 200-220 вольт.

А так как все чаще в проводке используются медные кабели и провода, то наша задача в этой статье рассмотреть сопротивление медного провода (таблица сопротивления проводов будет ниже приложена).

Что нам дает сопротивление в общем? В принципе, с его помощью можно узнать параметры используемого провода или материал, из которого он изготовлен. К примеру, если для прокладки линии электропередачи использовался скрытый способ, то зная сопротивление линии, можно точно сказать, какой она длины.

Ведь часто прокладка производится под землей и непрямолинейным способом. Или еще один вариант, зная длину участка и его сопротивление можно подсчитать диаметр используемого кабеля, а через него и его сечение. Плюс, зная данную величину, можно узнать материал, из которого этот провод был изготовлен.

Это все говорит о том, что не стоит сбрасывать со счетов данный показатель.

Все это касалось электрической проводки, но когда дело касается электроники, то в этой области без определения сопротивления и сопоставления его с другими параметрами не обойтись.

В некоторых случаях данный параметр может сыграть решающую роль, даже неправильный подбор провода по сопротивлению может привести к тому, что подключаемый к такому проводнику прибор просто не будет работать. К примеру, если к блоку питания обычного компьютера подключить очень тонкий провод.

Напряжение в таком проводнике станет низким, не намного, но этого будет хватать, чтобы компьютер работал некорректно.

От чего зависит сопротивление

Так как мы говорим о медном проводе, то первое от чего зависит этот физический параметр, это медь, то есть, сырьевой материал. Второе – это размеры проводника, а, точнее, его диаметр или сечение (обе величины связаны между собой формулой).

Конечно, есть дополнительные физические величины, которые влияют на сопротивление проводника. К примеру, температура окружающей среды. Ведь известно, что при повышении температуры самого провода, его сопротивление увеличивается.

А так как этот показатель находится в обратной зависимости от силы (плотность) тока, соответственно ток при повышении сопротивления, наоборот, снижается. Правда, это относится к тем металлам, которые являются обладателями положительного температурного коэффициента. Для примера можно привести сплав вольфрама, который используется для нити накала лампочки.

Такому материалу изменения силы (плотность) тока не страшны при высоком нагреве, потому что этот металл обладает отрицательным температурным коэффициентом.

Расчет сопротивления

Сегодня все сделано для человека. И даже такой простой расчет можно сделать несколькими способами. Есть простые, есть сложные. Начнем с простых.

Первый вариант табличный. В чем его простота? К примеру, таблица на нижнем рисунке.

Здесь все четко показано и взаимосвязано. Зная определенные размеры медного провода, можно определить его сопротивление и силу тока, которую провод может выдержать.

Или, наоборот, имея в наличие показатели сопротивления или силы (плотность) тока, которые, кстати, можно определить мультиметром, можно легко определить сечение или диаметр проводника.

Данный вариант самый удобный, таблицы можно найти в свободном доступе в интернете.

Второй способ определения – с помощью калькулятора (онлайн). Таких интернетовских приспособлений великое множество, работать с ними удобно и легко.

Можно в такой калькулятор вставлять физические величины медного проводника и получать размерные показатели, или, наоборот.

Правда, основная масса таких калькуляторов в своей программе имеет одно стандартное значение – это удельное сопротивление меди, равное 0,0172 Ом·мм²/м.

И самый сложный вариант расчета – это провести его своими руками, используя формулу. Вот она: R=pl/S, где:

  • р – это то самое удельное сопротивление меди;
  • l – длина медного провода;
  • S – его сечение.

Хотелось бы отметить, что медь обладает одним из самых низких удельных сопротивлений. Ниже него только серебро – 0,016.

Определить сечение проводника можно через формулу, где основным параметром является его диаметр. А вот определить диаметр можно разными способами, кстати, такая статья на нашем сайте есть, можете прочитать и получить полную и достоверную информацию.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.