Линейное расширение металла

Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей (Таблица)

Линейное расширение металла

В таблице приведены средние значения температурного коэффициента линейного расширения ɑ металлов и сплавов в интервале от 0 до 100 °С (если не указана иная температура).

Металл, сплавКоэффициента линейного расширения ɑ, 10-6°С-1
Алюминий2,4
Бронза13-21
Вольфрам (в интервале температур от 0 до 200 °С)4,5
Дуралюмин (при t = 20 °С)23
Золото14
Железо12
Инвар*1,5
Иридий6,5
Константан42339
Латунь17-19
Манганин18
Медь17
Нейзильбер18
Никель14
Нихром (от 20 до 100 °С)14
Олово26
Платина9,1
Платинит** (при t = 20 °С)41920
Платина-иридий*** (от 20 до 100 °С)8,8
Свинец29
Серебро20
Сталь углеродистая43009
Цинк32
Чугун (от 20 до 100 °С).41952
* Этот сплав имеет весьма малый температурный коэффициент линейного расширения. Используется для изготовления деталей точных измерительных приборов.** Проводниковый материал, коэффициент линейного расширения которого такой же, как и у стекла; применяется при изготовлении электрических ламп.*** Из этого сплава изготовлены прототипы килограмма и метра.

Температурный коэффициент линейного расширения твердых веществ

В таблице приведены средние значения температурного коэффициента линейного расширения ɑ твердых веществ в интервале от 0 до 100 °С (если не указана иная температура). 

ВеществоКоэффициента линейного расширения ɑ, 10-6°С-1
Алмаз1,2
Бетон (при t = 20 °С)41913
Гранит (при t = 20 °С)8
Графит7,9
Древесина (при t = = 20 °С):
  — вдоль волокон5,5-5,5
  — поперек волокон34-60
Кварц плавленый (при * = 40 °С)0,4
Кирпич (при t = 20 °С)41885
Лед (в интервале температур от —20 до 0 °С)51
Парафин (от 16 до 48 °С)70*
Дуб (от 2 до 34 °С):
  — вдоль волокон4,9
  — поперек волокон54,4
Сосна (от 2 до 34 °С):
  — вдоль волокон5,4
  — поперек волокон34
Стекло лабораторное41885
Стекло оконное (от 20 до 200 °С)10
Фарфор2,5-4,0
Шифер (при t = 20 °С)10
* коэффициент объемного расширения парафина.

Температурный коэффициент обьемного расширения жидкостей

В таблице приведены средние значения температурного коэффициента обьемного расширения β жидкостей при температуре  20 °С (если не указана иная).

ЖидкостьКоэффициента обьемного расширения β, 10-6°С-1
Бензин1240
Вода200
Вода (в интервале от 10 до 20 °С)150
Вода (от 20 до 40 °С)302
Воздух жидкий (от -259 до -253 °С)12600
Глицерин505
Керосин960
Кислород (от -205 до -184 °С)3850
Нефть900
Раствор соли (6%)300
Ртуть181
Серная кислота570
Скипидар940
Спирт1080
Эфир1600
Хлор (в интервале температур от -101 до -34,1 °С) 1410
Примечание. Связь между коэффициентами объемного (β) и линейного (а) расширений определяется следующим соотношением: β = 3а

Тепловое расширение трубопроводов

Линейное расширение металла

Под действием изменения температур изменяется размер промышленных и коммунальных изделий. Это касается труб, конструкций, оборудования и сооружений. Далее будет рассмотрен вопрос компенсации сжатия и теплового расширения.

При проектировании трубопровода должны учитываться любые перемещения, которые могут возникнуть из-за внешнего воздействия на него, в т.ч. его расширения из-за температурных перепадов. Трубы могут представлять реальную опасность для деталей трубопровода и другого оборудования, т.к. испытывают напряжение при изменениях температуры рабочей среды.

Существует 3 основных метода компенсации перемещений трубопровода:

  1. Применяется эффект самокомпенсации
  2. Устанавливается компенсатор
  3. Устанавливаются металлорукава

Тот или иной способ компенсации выбирается в зависимости от наличия или отсутствия других коммуникаций, ландшафтных особенностей местности, типа системы трубопроводов и т.д.

Рассмотрим способ компенсации расширения прямолинейных участков трубопровода посредством осевых сильфонных компенсаторов.

Расчеты

На первом этапе решения вопроса компенсации температурного перемещения трубопровода вычисляют точное изменение длины системы трубопровода. Расчеты ведутся в соответствии с условиями безопасности, которые предъявляются к трубопроводу.

При расчете теплового расширения трубопровода применяется следующая формула:

∆L = а х L x ∆t

В качестве коэффициента температурного расширения используется значение а, которое выражается в мм/(моС).

За длину трубопровода принимается значение L, выражаемое в м. Обычно измеряется длина между неподвижными опорами.

Показатель ∆t обозначает разницу значений между максимальным значением температуры рабочей среды и минимальным, выражается  в оС.

Расчет доступен каждому и даже не профессионал может легко сделать его.

Для того чтобы узнать коэффициент температурного расширения необходимо обратиться к таблице линейного расширения труб. Коэффициенты различаются в зависимости от используемого для производства труб материала.

Материал трубопровода

Коэффициент линейного расширения, мм/м °С

Чугун

0,0104

Сталь нержавеющая

0,011

Сталь черная и оцинкованная

0,0115

Медь

0,017

Латунь

0,017

Алюминий

0,023

Металлопластик

0,026

Поливинилхлорид (PVC)

0,08

Полибутилен (PB)

0,13

Полипропилен (PP-R 80 PN10 и PN20)

0,15

Полипропилен (PP-R 80 PN25 алюминий)

0,03

Полипропилен (PP-R 80 PN20 стекловолокно)

0,035

Сшитый полиэтилен (PEX)

0,024

Способы компенсации зависят от стойкости того или иного материала температурному расширению. Например, трубопровод из полимерных материалов более подвержен температурному расширению, чем выполненный из стали. Поэтому способ компенсации полимерных труб будет отличаться от способа компенсации стальных.

Коэффициенты линейного расширения, приведенные в таблице, являются усредненными и поэтому их нельзя использовать при расчете для трубопроводов, изготовленных из других материалов. Допускается различие коэффициентов на 5%, т.к. результат зависит от метода расчета и условий, при которых проводились исследования.

Рассмотрим пример:

Исходные данные: диаметр прямолинейного участка трубопровода 219 мм. Он произведен из черной углеродистой стали, ее длина 100м. tmin = -20оС и tmax = 140оС.

Расчет выглядит следующим образом: ∆t = 140 — (-20) = 160оС. Далее вычисляем изменение длины трубопровода, расчет следующий: ∆L = 0,0115 х 160 х 100 = 184мм.

Результат показывает, что длина трубопровода может меняться при данных значениях на 184мм. Чтобы обеспечить бесперебойную работу трубопровода, необходим осевой сильфонный компенсатор, условный диаметр которого равен 200мм, а компенсирующая способность — 200 мм (КСО 200-16-200).

Если значение теплового расширения трубопровода (∆L) будет больше, чем имеющиеся компенсирующие способности компенсаторов, то длину трубопровода уменьшают пропорционально компенсирующей способности и подбирают соответствующий сильфонный компенсатор.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.