Микродуговое оксидирование алюминия в домашних условиях

Микродуговое оксидирование алюминия в домашних условиях

Микродуговое оксидирование алюминия в домашних условиях

Технология микродугового оксидирования в части технологических преимуществ позволяет получать покрытие с широким спектром применения и наносить покрытие, как на новые изделия, так и для восстановления покрытий после износа, сокращает время нанесения покрытия, позволяет использовать меньшее количество оборудования, меньшее количество производственных площадей и экономит расход воды. Метод микродугового оксидирования позволяет сформировать покрытия, обладающие разнообразными функциональными свойствами, такие как коррозионностойкие, износостойкие, термостойкие, электроизоляционные, защитные и защитно-декоративные. Такая многофункциональность покрытий позволяет применять их в самых разнообразных отраслях промышленности.

Особенности технологии производства

Микродуговое оксидирование – это электрохимический процесс модификации (окисления) поверхности вентильных металлов и их сплавов (например, сплавы Al, Mg, Ti и др.) в электролитной плазме с целью получения оксидных слоев (покрытий).

Процесс этот берет свое начало от анодирования, однако проводится при большем напряжении, за счет чего происходят микродуговые разряды в точках пробоя барьерного слоя на поверхности.

В области пробоя резко повышаются температура и давление, часть металла переходит в раствор, где присутствует в виде ионов.

Другая часть расплавленного металла взаимодействует с компонентами электролита и формирует МДО-покрытие. Благодаря этому покрытие формируется не только на поверхности, но и вовнутрь изделия.

Помимо этого, высокие температуры в зоне пробоя приводят к формированию градиентного переходного слоя на границе металл-покрытие.

Этот слой обеспечивает прочное сцепление МДО-покрытия с подложкой, что в свою очередь обеспечивает адгезию полимерных покрытий наносимых на поверхность детали.

Технология МДО реализуется на оборудовании аналогичном гальваническому оборудованию. Аппаратурное оформление для МДО ближе всего к процессу анодирования алюминия.

Их принципиальные различия состоят в используемых источниках питания и электролитах, являющихся собственными разработками.

Это отличает технологию не только от анодирования и гальваники как таковой, но и от МДО реализуемого на других предприятиях.

Технические характеристики

Основными техническими характеристиками МДО-технологии являются:

  • высокая производительность;
  • применение надежных источников питания, позволяющих получать покрытие за более короткое время и с меньшими энергозатратами (0,12 кВт/м2 по сравнению с МДО других организаций);
  • возможность покрытия сложнопрофильных деталей;
  • возможность получения покрытия различного функционального назначения;
  • высокая скорость формирования покрытия – от 1 до 1,5 мкм/мин;
  • экологическая безопасность.

Потребительские свойства

Можно сравнивать технологию микродугового оксидирования с процессом анодирования, так как начальная стадия микроплазменного процесса в растворах протекает примерно по схожему механизму.

Однако возникновение микроплазменных разрядов после образования оксидной барьерной пленки приводит к резкому увеличению скорости процесса формирования покрытия, что является важным аргументом в пользу МДО, в плане производительности.

Скорость нанесения покрытия в нашем случае превосходит скорость нанесения при анодировании.

Кроме того, в случае микродугового оксидирования нет жестких требований к подготовке поверхности алюминия, что исключает из процесса ряд предварительных операций, проводимых в агрессивных растворах при анодировании, что также сказывается на производительности. Сами растворы анодирования также очень часто представляют опасность для окружающей среды. В этом смысле растворы имеют существенные отличия, процесс ведется в слабощелочных экологически безвредных растворах.

МДО-технология также отличается от МДО-технологий других компаний. Практически все участники рынка МДО-технологий предлагают покрытия, которые требуют дополнительной механической обработки после МДО-процесса, что также увеличивает стоимость конечного продукта – покрытия.

Применение ИП, разработанных нашими специалистами позволяют получать покрытия, которые имеют широкое применение – от подслоя под полимерные материалы до износостойких и коррозионностойких, работающих при высоких механических нагрузках (в узлах трениях при скоростях вращения до 60000 об-1) и температурах (до 320°С).

Таким образом, процесс микродугового оксидирования имеет существенные преимущества: отсутствие предварительной обработки, высокая скорость нанесения покрытий, безопасность применяемых слабощелочных растворов электролитов, варьируемая толщина покрытия, возможность нанесения на сложнопрофильные изделия.

  • КОРАБЛЕСТРОЕНИЕ – декоративная отделка и защита от износа, коррозии элементов катеров, яхт, водных мотоциклов, лодок и др.
  • АВТО-МОТО ТЮНИНГ – декоративная отделка и защита от износа, коррозии деталей из алюминиевых, магниевых и титановых сплавов.
  • МАШИНОСТРОЕНИЕ – пары трения, подшипники скольжения, зубчатые передачи, поршни, цилиндры, торцевые уплотнения для двигателей внутреннего сгорания, станков и машин различного назначения в судостроении, авиационной промышленности, детали для сельскохозяйственной техники
  • МЕДИЦИНА – защита хирургических эндопротезов
  • возможность создания сверхпрочных покрытий, уступающих по прочности только алмазам
  • возможность нанесения покрытий на внешних и внутренних поверхностях деталей любой конфигурации
  • возможность получения разных цветов покрытий без дополнительной покраски
  • отсутствие необходимости в предварительной обработке поверхностей
  • высокое сопротивление коррозионной усталости (высокий предел выносливости).

Технические характеристики МДО покрытий на сплавах

ХарактеристикаАлюминиевые сплавыМагниевые сплавы
Толщина покрытия10-300 мкм10-300 мкм
Микротвердость800-1950 HV650-950
Коэффициент трения0,01-0,020,01-0,02
Напряжение пробоядо 4500 В600 В

Структура МДО покрытий на а) алюминиевых (АД31) и б) магниевых (МЛ5) сплавах.

Свойства покрытий достигаются за счет формирования на поверхности изделий керамических оксидных пленок, в частности –  Al2O3 (корунд), позволяющих многократно повысить износостойкость и коррозионную стойкость деталей, придав им красивый декоративный вид.

СплавЦвет покрытия
Цвет покрытия, обусловленный самим сплавом
Д16чёрныйкоричневый
В95розовый
АМг5бежевый
Алюминиевый сплав с титаномголубой
МЛ5бежевыйсерый
АК12серый
Цвета покрытий, получаемые на любом сплаве
1. бурый
2. черный
3. коричневый
4. синий
5. белый

Условия оплаты:

  • 50 % – аванс;
  • 20 % – после извещения о готовности оборудования к отправке и принятия ее заводских испытаний на площадке Изготовителя;
  • 20 % – после поставки оборудования на склад предприятия Заказчика;
  • 10 % – после ввода оборудования в эксплуатацию.

Сроки:

  • сроки изготовления оборудования – 6 месяцев с момента получения авансового платежа;
  • сроки поставки – 4 недели;
  • сроки монтажа – 3 недели.

По согласованию с Заказчиком могут быть установлены иные сроки и условия оплаты.

Анодирование алюминия — способы выполнения технологии

Анодирование алюминия (анодное оксидирование) – это процесс, в результате которого на поверхности металла образуется оксидное покрытие.

Основная задача оксидного покрытия – защитить поверхность алюминия от окисления, возникающего из-за взаимодействия этого металла с воздухом.

Анодирование призвано не уничтожать пленку, образовавшуюся при окислении (она выполняет защитную функцию), а сделать ее более прочной. В этом отношении анодирование похоже на такой метод, как воронение окислением.

Технология анодного оксидирования используется для укрепления не только алюминия и его сплавов, но и других металлов. К примеру, оксидные покрытия используются для защиты титана и магния.

Помимо укрепления поверхностного слоя, анодирование преследует следующие цели:

  • сглаживание различных дефектов поверхности (сколов, царапин и т.п.);
  • повышение адгезивных качеств материала (краска значительно лучше сцепляется с оксидной пленкой, чем с голым металлом);
  • улучшение внешнего вида металла;
  • придание металлу различных декоративных эффектов (к примеру, можно создать имитацию золота, серебра, жемчуга).

Технология анодирования

Процесс анодирования можно разделить на три части:

  • подготовительный процесс;
  • химическую обработку;
  • закрепление.

Подготовительный процесс

На этом этапе алюминиевый профиль подвергается механической и электрохимической обработке. Под механической обработкой понимается очистка металла, его шлифование и обезжиривание.

Далее изделие кладут сначала в щелочной раствор для травления, а затем перекладывают в кислотный для осветления. Завершается подготовка промывкой поверхности.

Причем промывка осуществляется несколько раз, чтобы полностью удалить кислотные вещества с металла.

Химическая обработка

Химическое оксидирование алюминия представляет собой обработку металла в электролите.

В качестве электролитов используются растворы различных кислот (серной, хромовой, щавелевой, сульфосалициловой).

Порой в растворы добавляют соль или органическую кислоту.

Наиболее распространенный электролит – серная кислота.

И все же этот электролит не применяется для обработки изделий сложной формы, на которых имеются небольшие отверстия или зазоры.

В таких случаях предпочтительна хромовая кислота. А вот щавелевая кислота позволяет значительно улучшить разноцветные изоляционные покрытия.

Химическое оксидирование алюминия

Качество процесса зависит от нескольких составляющих, в числе которых концентрация, температурный режим и плотность тока.

Высокие температуры способствуют ускорению анодирования. Причем пленка образуется мягкая и высокопористая.

Если необходимо твердое покрытие, применяется более низкая температура.

Химическое оксидирование алюминия может осуществляться при температурах от нуля, до плюс 50 градусов по Цельсию.

Плотность тока может варьироваться от 1 до 3 Ампер на квадратный дециметр.

Показатель электролитной концентрации может находиться в пределах 10-20%.

Закрепление

После оксидирования металл выглядит, как пористая поверхность (даже при использовании холодного режима). Чтобы поверхность была достаточно прочной, эти поры нужно перекрыть. Делается это одним из трех способов:

  • окунанием изделия в горячую пресную воду;
  • обработкой паром;
  • размещением металла в так называемом «холодном растворе».

Обратите внимание! Если изделие будет окрашиваться, процесс закрепления не нужен, поскольку лакокрасочный материал естественным образом заполнит имеющиеся поры.

Существует три разновидности оборудования для оксидирования алюминия:

  • основное (ванны);
  • обслуживающее (обеспечение работы);
  • вспомогательное (подача изделий в ванну, проведение подготовки, складирование и т.п.).

Другие способы анодирования

Помимо классического способа, описанного выше, также может применяться твердое, микродуговое и цветное анодирование. Вкратце об этих способах обработки металла будет рассказано ниже.

Задача твердого анодирования – получить особо прочную микропленку. Методика нашла широкое распространение в авиастроении, автомобилестроении и строительстве.

Особенность технологии состоит в том, что задействуются не один, а сразу несколько электролитов.

К примеру, в рамках одного процесса могут применяться щавелевая, серная, лимонная, винная и борная кислоты.

В ходе анодирования плотность тока постепенно увеличивается, и благодаря структурным изменениям в ячейках пленка приобретает повышенную прочность.

Схема микродугового оксидирования

Микродуговое оксидирование – это электрохимический процесс, в котором поверхность алюминия окисляется, и в это же время между анодом и электролитом происходят электрозарядные явления. Методика позволяет получать особенно качественные покрытия с высоким уровнем износостойкости и адгезии.

Еще один способ анодирования – цветное. Как видно из названия, основная задача процесса – изменить цвет детали.

Существует четыре способа цветного анодирования:

  • Окрашивание методом адсорбции. Осуществляется путем погружения изделия в электролитную ванну. Также возможно окунание детали в раствор с красящим веществом, разогретым до заданной температуры.
  • Электролитическое окрашивание (другое название – черное анодирование). Вначале получают бесцветную пленку, а затем окунают металл в кислый солевой раствор. На выходе цвет изделия может разниться от черного, до слабого бронзового оттенка. Черные тона алюминия особенно востребованы в строительной отрасли.
  • Интерференционное окрашивание. Технология схожа с электролитическим окрашиванием, но за счет создания особого светоотражающего слоя цветовые оттенки получаются гораздо разнообразнее.
  • Интегральное окрашивание. Технология представляет собой смешивание электролита с органическими солями.
  • Анодирование в домашних условиях

    Самостоятельное анодирование практически всегда осуществляется по холодной методике. Такой же технологии придерживается и большинство компаний, предоставляющих подобные услуги.

    Холодной методика называется из-за того, что в процессе создания пленки нет нужды в высоких температурах: рабочий диапазон температур колеблется между -10 и +10 градусов по Цельсию.

    Достоинства холодного анодирования:

  • Поверхностный слой получается достаточно толстым благодаря тому, что скорость роста и растворения оксидной пленки с ее наружной и внутренней стороны различаются.
  • Пленка выходит очень прочной.
  • Обработанный металл отличается высокой стойкостью к коррозии.
  • Единственный недостаток методики состоит в сложности дальнейшей окраски металла материалами, основанными на органике.

    Однако металл, вне зависимости от его характеристик, в любом случае получает окраску естественным образом.

    Цвет может различаться от оливкового, до черного или сероватого.

    Микродуговое оксидирование – технология модификации поверхности металла

    Микродуговое оксидирование алюминия в домашних условиях

    Микродуговое оксидирование позволяет получать покрытия различного назначения: термостойкие, электроизоляционные, декоративные, коррозионностойкие и защищающие от фреттинг-коррозии в частности, износостойкие, а также являющиеся подслоем для нанесения полимерных материалов.

    Описание

    Преимущества

    Линия для микродугового оксидирования

    Описание:

    Микродуговое оксидирование – один из самых перспективных методов поверхностной обработки поверхности металлов за счет ее (поверхности) модификации.

     Микродуговое оксидирование позволяет получать покрытия различного назначения: термостойкие, электроизоляционные, декоративные, коррозионностойкие и защищающие от фреттинг-коррозии в частности, износостойкие, а также являющиеся подслоем для нанесения полимерных материалов.

    Сущность метода заключается в том, что при пропускании тока большой плотности через границу раздела металл-электролит создаются условия, когда напряженность на границе раздела становиться выше ее диэлектрической прочности и на поверхности электрода возникают микроплазменные разряды с высокими локальными температурами и давлениями.

    Результатом действия микроплазменных разрядов является формирование слоя покрытия, состоящего из окисленных форм элементов металла основы и составляющих электролита.

    В зависимости от режима микроплазменного оксидирования и состава электролита можно получать керамические покрытия с уникальными характеристиками и широчайшим спектром применения.

    Модификация поверхности и структурирование переходного слоя достигается реализацией последовательности из серий периодических формующих электрических импульсов особой формы.

    Посредством управления амплитудой, длительностью, фронтами и срезами, фазовым соотношением, позиционным комбинированием и частотой импульсов происходит генерация плазменных разрядов.

    Они синтезируют твердые структуры металлокерамических соединений (композитов) высокотемпературных полиморфных модификаций из элементов материала основы с определенной избирательностью, зависящей от состава нормально-активирующей или нормально-пассивирующей среды (рН и состав электролита).

    Разработаны технологические процессы нанесения покрытия на основе оксида алюминия, диоксида кремния и пр.

    Микродуговое оксидирование в научной литературе имеет и другие названия: плазменно-электролитный синтез оксидных слоев, плазменно-электролитическое оксидирование, оксидирование в электролитной плазме, поверхностная обработка в электролитной плазме, микроплазменное электролитическое оксидирование, анодно-искровое оксидирование.

    Преимущества:

    – возможность создания сверхпрочных покрытий с уникальными характеристиками,

    получение нескольких защитных характеристик в комплексе,

    – практически бесконечный срок службы электролита,

    возможность обработки сложнопрофильных деталей, в том числе и внутренней поверхности труб,

    – высокая рассеивающая способность электролита (покрытие наносится в отверстия и полости с минимальными затруднениями),

    нет необходимости в специальной подготовке поверхности перед нанесением покрытия и механообработке после нанесения покрытия,

    – получение разных покрытий на одном материале,

    экологическая чистота производственного процесса,

    – низкая себестоимость покрытия,

    – отсутствие вредных газообразных выбросов в атмосферу,

    – придание поверхности одновременно нескольких видов функциональных характеристик,

    наличие возможности встроить новое МДО оборудование в уже существующие технологические линии,

    – не требуется специальной подготовки поверхности,

    – поверхность обрабатываемых деталей – от нескольких квадратных миллиметров до метров.

    Линия для микродугового оксидирования:

    Производственная линия для микродугового оксидирования состоит из:

    силового оборудования – специализированных источников питания,

    ванн, в которых проводиться подготовка поверхности, обработка и промывка,

    манипулятора для перемещения подвески с деталями (в случае серийного производства),

    металлоконструкций для размещения ванн и манипулятора,

    вспомогательного оборудования – дистиллятора, насоса-фильтра для очистки и перекачки растворов, резервных емкостей, приборов контроля качества покрытия и состояния электролита.

    От источников питания на клеммы ванн подаются импульсы тока определенной формы, при этом деталь выполняет роль анода, в качестве катода служит ванна или дополнительные электроды, как правило, из нержавеющей стали.

    Линия для микродугового оксидирования отличается:

    сравнительно невысоким энергопотреблением,

    высокой производительностью,

    небольшой производственной площадью,

    простотой обслуживания и минимальным количеством персонала,

    экологической безопасностью производства,

    доступность реактивов и других используемых расходных материалов.

    Количество необходимых технологических операций при микродуговом оксидировании существенно меньше, чем при традиционных процессах анодирования. Это следует из отсутствия многочисленных подготовительных операций и экологичности применяемых растворов.

    Оно включает следующие операции: загрузка, обезжиривание, промывка, нанесение МДО покрытия, улавливание, промывка, выгрузка. После загрузки-монтажа деталей на подвеску проводится обезжиривание, после чего детали поступают на обработку.

    При больших масштабах производства после ванны нанесения покрытия ставят ванну улавливания для более рационального использования химикатов и промывной воды.

    карта сайта

    использование технологии микродугового оксидирования при разработке двс
    микродуговое оксидирование алюминия в домашних условиях мдо санкт петербург обзор chm оборудование поршней и гильз теория технология оборудование титана цилиндро поршневой группы в двс
    метод генератор электрические схемы установок технология установка обобщенная модель микродугового оксидирования алюминиевых сплавов михеев тип а371 517

    Технология микродугового оксидирования (МДО-покрытия) и покрытия на ее основе

    Микродуговое оксидирование алюминия в домашних условиях

    Технология микродугового оксидирования в части технологических преимуществ позволяет получать покрытие с широким спектром применения и наносить покрытие, как на новые изделия, так и для восстановления покрытий после износа, сокращает время нанесения покрытия, позволяет использовать меньшее количество оборудования, меньшее количество производственных площадей и экономит расход воды. Метод микродугового оксидирования позволяет сформировать покрытия, обладающие разнообразными функциональными свойствами, такие как коррозионностойкие, износостойкие, термостойкие, электроизоляционные, защитные и защитно-декоративные. Такая многофункциональность покрытий позволяет применять их в самых разнообразных отраслях промышленности.

    Поделиться:
    Нет комментариев

      Добавить комментарий

      Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.