Почему ржавеет металл
Удаление ржавчины
- Характеристика
- Борьба
- Средства для удаления
Сегодня с образованием ржавчины на металлических поверхностях сталкиваются многие люди. Она образуется под воздействием окружающей среды. Процесс образования ржавого налета может иметь разную продолжительность. Она зависит от того, в каких условиях окружающей среды находится тот или иной металлический предмет.
Характеристика ржавчины
С химической точки зрения ржавчина представляет собой оксид железа. Он образуется путем влияния кислорода на железо в условиях высокой влажности. С физической точки зрения данное образование на металлической поверхности представляет собой налет насыщенного оранжевого цвета, который обладает достаточно хрупкой консистенцией. Цвет ржавчины при некоторых условиях может быть и зеленым.
На сегодняшний день встречается несколько видов ржавчины. Они зависят от того, каким образом образуется налет.
К видам данного типа коррозии относятся:
- Красные окислы. Они образуются под воздействием кислорода на железо под воздействием воды.
- Зеленая ржавчина. Она образуется под воздействием на железо хлора без участия в процессе кислорода. В современно мире не редко встречается такой тип ржавчины. Он известен многим благодаря налету, который образуется на арматуре, которая применяется для сооружения бетонных морских столбов.
Существует еще несколько видов и форм ржавчины. Все он отличаются визуально. В некоторых случаях для определения типа коррозии используется метод спектроскопии. Образование коррозии на железе практически неизбежно.
Постепенно любое количество данного металла под воздействием кислорода и воды превращается в груду, которая полностью покрыта налетом насыщенного оранжевого цвета. В последующем это может привести к разрушению железа.
Под воздействием ржавчины данный металл начинает приобретать не плотную структуру, что приводит к тому, что ржавчина его разъедает и уничтожает.
Ржавчина принадлежит к одному из продуктов такого процесса, как коррозия. В результате него повреждаются различные виды металлов. Коррозии подвержены металлы, которые образуются из сплавов железа. Сталь в некоторых случаях тоже подвергается данному процессу, если она не относится к разряду нержавеющих. Однако ржавчиной называется именно процесс образования оксида железа.Причиной ржавления железа чаще всего является наличие воды, доступа к кислороду и к другим сильным окислителям. Под их воздействием железо начинает покрываться ржавым налетом. Для того чтобы ускорить этот процесс достаточно только добавить соли. В результате электрохимической реакции железо начнет ржаветь сильнее и быстрее произойдет разрушение предмета, который сделан из данного металла.
В некоторых случаях железо начинает покрываться ржавчиной, если оно находится в агрессивной среде. Такой средой может быть раствор, состоящий из воды диоксида серы и углекислого газа.
Таблица. Основные количественные показатели коррозии и коррозионной стойкости
Сплошная коррозия | Глубина проникновения коррозии | Линейная скорость коррозии | Время проникновения коррозии на допустимую (заданную) глубину* |
Потеря массы на единицу площади | Скорость убыли массы | Время до уменьшения массы на допустимую (заданную) величину* | |
Коррозия пятнами | Степень поражения поверхности | Время достижения допустимой (заданной) степени поражения* | |
Питтинговая коррозия | Максимальная глубина питтинга | Максимальная скорость проникновения питтинга | Минимальное время проникновения питтингов на допустимую (заданную) глубину* |
Максимальный размер поперечника питтинга в устье | Минимальное время достижения допустимого (заданного) размера поперечника питтинга в устье* | ||
Степень поражения поверхности питтингами | Время достижения допустимой (заданной) степени поражения* | ||
Межкристаллитная коррозия | Глубина проникновения коррозии | Скорость проникновения коррозии | Время проникновения на допустимую (заданную) глубину* |
Снижение механических свойств (относительного удлинения, сужения, ударной вязкости, временного сопротивления разрыву) | Время снижения механических свойств до допустимого (заданного) уровня* | ||
Коррозионное растрескивание | Глубина (длина) трещин | Скорость роста трещин | Время до появления первой трещины** |
Снижение механических свойств (относительного удлинения, сужения) | Время до разрушения образца** Уровень безопасных напряжений** (условный предел длительной коррозионной прочности**) Пороговый коэффициент интенсивности напряжений при коррозионном растрескивании** | ||
Коррозионная усталость | Глубина (длина) трещин | Скорость роста трещин | Количество циклов до разрушения образца** Условный предел коррозионной усталости** Пороговый коэффициент интенсивности напряжений при коррозионной усталости** |
Расслаивающая коррозия | Степень поражения поверхности отслоениями Суммарная длина торцов с трещинами | — | |
Глубина проникновения коррозии | Скорость проникновения коррозии |
Борьба с ржавчиной
В современном мире производится большое количество изделий из железа. Они представлены и товарами промышленного назначения, и продукцией для использования в быту. Всегда хочется, чтобы они прослужили длительное время.
Образование ржавчины не является полезным для предметов, сделанных из железа. Она приводит к их поломке и выходу из строя. Именно по этой причине следует знать о том, как убрать ржавчину, и как противостоять ее появлению.
Для того чтобы ржавчина не нанесла вред изделиям необходимо использовать специальные средства для того, чтобы на поверхности объектов из железа образовалась пленка, защищающая от проникновения в структуру металла воздуха и воды.
На сегодняшний день для защиты от ржавчины используются следующие методы:
- Гальванизация. Данный метод применяется при производстве нержавейки. На металл наносится слой меди или цинка. Также в некоторых случаях применяется кадмий. Данные вещества образуют на поверхности не видную пленку, которая придает материалу железа плотность и высокую устойчивость к влаге и к кислороду.
- Катодная защита. Данный метод применяется преимущественно для труб, которые прокладываются глубоко под землей. К ним проводится электрический заряд, который вызывает электрохимическую реакцию, предотвращаю появление ржавого налета на поверхности труб.
- Нанесение на поверхность предметов из железа лакокрасочных изделий. Данный метод заключается в том, чтобы помимо декорирования изделия, защитить его от налета ржавчины. Краска тонким слоем покрывает металла и не дает возможности влаге и воздуху добраться до структуры железа.
Важно: Для того чтобы на окрашенном изделии не образовалось ржавчины необходимо следить, чтобы краска лежала ровным слоем и не имела никаких сколов. Иначе на поверхность металла будет влиять влажность и воздух.
В настоящее время имеются средства для удаления ржавчины. Их можно использовать, когда налет уже образовался. Они направлены на то, чтобы сделать структуру налета более хрупкой для получения возможности снятия его с поверхности металла.
Самым популярным средством устранения ржавого налета является преобразователь ржавчины. Он представляет собой раствор, который превращает налет в вещество, которое легко поддается устранению. Многие такие средства делают структуру ржавчины более однородной, что позволяет оставлять ее на поверхности металла для проведения лакокрасочных работ, если она не нарушает ее ровность.
Средства для удаления ржавчины
Сегодня не редко встречается специальная краска по ржавчине. Она представлена на отечественном рынке большим количеством марок. Ее достоинством является то, что, она дает достаточно плотное покрытие. Она обладает тройным действием.
Она сочетает в себе функции:
- преобразователя ржавчины,
- грунтовки,
- красящего вещества с высоким уровнем плотности.
Она не только устраняет следы ржавчины, но и делает покрытие более ровным и привлекательным. Краски для работы с ржавыми предметами обладают высоким уровнем насыщенности цвета, чтобы даже в один слой скрывались все следы наличия ржавого налета. При этом на металле образуется небольшой слой пленки, который не дает ржавчине и дальне распространяться и развиваться новой.
удаления ржавчины
Ржавчина — химические основы процесса
Железо – химически активный металл, который в присутствии воды и кислорода легко окисляется, образуя несколько соединений – оксидов, гидроксидов и их гидратов. Как ни странно, но точной формулы ржавчины не существует: в зависимости от условий окружающей среды продукт окисления железа имеет переменный состав: nFe(OH)3*mFe(OH)2*pH2O.
Поражение ржавчиной происходит по всей поверхности металла, но наиболее уязвимыми местами являются сварные швы, внутренние углы конструкций, отверстия для резьбовых соединений. По своей структуре ржавчина очень рыхлая, сцепление с металлом практически отсутствует.
Из-за высокой пористости слой ржавчины легко задерживает атмосферную влагу, создавая благоприятные условия для дальнейшего разрушения металла.
Опасность процесса в том, что визуально оценить степень поражения металлической конструкции не представляется возможным: под красно-бурым слоем ржавчины металл может быть полностью разрушен.
Если своевременно не принять меры, результат может оказаться плачевным, вплоть до полного разрушения изделия.
Одно дело, если это – ржавый гвоздь в стене дачного домика, и совсем другое – если ржавчина поразила опору ЛЭП или корпус морского судна.
Способы удаления ржавчины
Народная мудрость гласит, что любую проблему проще предотвратить, чем потом прикладывать героические усилия для устранения ее последствий. Ржавчина – не исключение. За последние 20-30 лет химики и физики предложили немало способов предотвращения коррозии – от защитных покрытий до сложных инженерных сооружений – станций электрохимической защиты.
Если ржавчина все-таки появилась – это не повод опускать руки: есть немало эффективных способов ее удаления, и чем раньше предприняты активные меры, тем большим будет эффект от их применения. Итак, обо всем по порядку.
Механическое удаление ржавчины
Продукты коррозии обладают малой адгезией и поэтому легко удаляются с поверхности металла при механическом воздействии – например, при обработке металлической щеткой.
Снять ржавый налет с крупных изделий можно с помощью шлифовального станка, соблюдая при этом простое правило: начинать нужно с крупного зерна, а для финишной обработки использовать самое мелкое. Участки металла, с которых удалена ржавчина, оказываются совершенно беззащитными перед атмосферным воздействием.
Если их не обработать антикоррозионными составами, предотвращающими контакт с водой и кислородом, процесс ржавления только ускорится.
Химические способы удаления ржавчины
Зная природу и химический состав ржавчины, логично предположить, что удалить ее можно с помощью кислот. Из школьного курса химии известно, что оксиды и гидроксиды металлов легко взаимодействуют с кислотами, при этом образуются соли железа и соответствующей кислоты, и вода.
Например, при действии соляной кислоты происходят следующие реакции:
- 2Fe (OH)3 + 6HCL → 2FeCl3 + 6H2O
- Fe (OH)2 + 2HCL → FeCl2 +2H2O
Образующийся хлорид железа – водорастворимая соль, которую необходимо удалить с поверхности обрабатываемого изделия простым ополаскиванием в воде, а затем насухо вытереть поверхность. Не надо ждать, пока ржавчина начнет образовываться снова, очищенные участки следует обработать защитными составами.
При обработке кислотами существует опасность растворения металла, поскольку железо в электрохимическом ряду напряжений стоит до водорода, оно активно реагирует со многими разбавленными кислотами:
По этой причине прежде, чем заняться химическими экспериментами в домашних условиях, необходимо почитать соответствующую литературу. Устранить побочный эффект поможет ингибитор коррозии – уротропин, при добавлении всего 1-2 г на литр раствора соляной кислоты реакция с железом не протекает.
Преобразователи ржавчины
Жидкие составы на основе ортофосфорной кислоты являются отличным способом предотвратить дальнейшее образование ржавчины на поверхности стальных и железных изделий. При таком способе обработки предварительно удаляются лишь те участки ржавчины, которые слабо держатся на основе.
Образующийся в процессе реакции ортофосфат железа создает прочную защитную пленку, через которую не проникает влага и кислород, благодаря чему предотвращается дальнейшая коррозия металла.
Для ускорения процесса высыхания на литр 25%-ого раствора ортофосфорной кислоты можно добавить 30-40 мл изобутилового спирта или 15 граммов винной кислоты.
Современное оборудование для удаления ржавчины
Механические способы очистки поверхности от ржавчины с помощью подручных средств применимы далеко не всегда, если изделие имеет сложную форму, то обработать все участки не представляется возможным. Химические способы тоже имеют свои недостатки, при несоблюдении элементарных правил техники безопасности можно получить химический ожог или отравление.
Определенную проблему представляет и утилизация отработанных растворов.
Оптимальным способом удаления ржавчины, особенно с поверхности изделий сложной геометрической формы, является мягкий бластинг. Суть метода состоит в следующем, на металлическое изделие направляется струя сжатого воздуха, содержащая особые абразивные гранулы.
Меняя давление, можно регулировать глубину слоя, снимаемого с поверхности – таким образом удаляется только слой ржавчины или окалины, а металл остается нетронутым. Гранулы ARMEX, используемые в аппарате для мягкого бластинга Nordblast NB 28-2, состоят из мельчайших частиц соды и мела.
Попадая под большим давлением на поверхность, они легко удаляют не только ржавчину, но и лакокрасочные материалы.
Отличительной особенностью метода является абсолютная экологическая безопасность: применяемые компоненты химически инертны.
Многочисленные исследования доказали, что на поверхности металла практически не образуются царапины и иные микроскопические дефекты, которые последствии могут стать центрами повторного образования ржавчины.Щелочная природа гранул способствует образованию пассивной пленки на изделиях из железа или стали, предохраняя основной объем металла от коррозионного разрушения.
Наилучшие результаты применения аппарата мягкого бластинга Nordblast NB 28-2 получены при обработке деталей машин или яхт. Процесс чистки от ржавчины зависит от степени коррозии, обычно на полную обработку автомобиля уходит 1 день, яхты – 2 дня.
Чем раньше обнаружена проблема, тем проще бороться с ржавчиной. Какой способ наиболее предпочтителен – каждый решает самостоятельно, но не стоит пользоваться дедовскими методами, если есть оборудование, удаляющее ржавчину со 100%-ой эффективностью!
Оставляете заявку на сайте или по телефону
Оцениваем запрос и тех. документацию
Осматриваем объект
Подготавливаем КП
Сдаем работу заказчику
Выполняем работы
Разрабатываем рабочую документацию
Заключаем договор
Наши преимущества
Подготовленный персонал, находящийся постоянно в штате
Наличие богатого технического оснащения
Гарантийное и послегарантийное обслуживание
Самый большой спектр услуг в России
Большой опыт работы на разнотипных объектах
Ржавчина на металле: вред, виды коррозии
Мы — продавцы металлопроката — как никто сталкивается с этим наваждением — ржавиной. И мы точно знаем вред от коррозии. В этой статье мы скажем несколько слов об этой проблеме, ее проявлениях, ее масштабах.
Ущерб, ущерб..
Все видели эти оранжево-бурые или желтоватые пятна ржавчины на металлических деталях. Экономический ущерб от коррозии металлов огромен.
В США и Германии подсчитанный ущерб от коррозии и затраты на борьбу с ней составляют примерно 3 % ВВП.
При этом потери металла, в том числе из-за выхода из строя конструкций, изделий, оборудования, составляют до 20 % от общего объема производства стали в год. По России точные данные о потерях от коррозии не подсчитаны.
Доподлинно известно, что именно проржавевшие металлоконструкции стали причиной обрушения нескольких мостов в Соединенных Штатах, в том числе с многочисленными человеческими жертвами. Крайне неприятен и экологический вред: утечка газа, нефти при разрушении трубопроводов приводит к загрязнению окружающей среды.
Виды коррозии и ее причины
Перед тем как говорить о ржавчине на железе, кратко рассмотрим другие ее типы.
Коррозии подвержены не только металлы, но и неметаллические изделия. В этом случае коррозию еще называют «старением». Старению подвержены пластмассы, резины и другие вещества. Для бетона и железобетона существует термин «усталость».
Происходит их разрушение или ухудшение эксплуатационных характеристик из-за химического и физического воздействия окружающей среды.
Корродируют и металлические сплавы — медь, алюминий, цинк: в процессе их коррозии на поверхности изделий образуется оксидная пленка, плотно прилегающая к поверхности, что значительно замедляет дальнейшее разрушение металла (а патина на меди еще и придает ей особый шарм).
Драгоценные металлы являются таковыми не только из-за своей красоты, ценимой ювелирами, но и за счет стойкости к коррозии. Золото и серебро до сих пор используется для покрытия особо чувствительных электронных контактов а платина применяется в космической отрасли.
Корродировать металл может в некоторых участках поверхности (местная коррозия), охватить всю поверхность (равномерная коррозия), или же разрушать металл по границам зерен (межкристаллитная коррозия). Коррозия заметно ускоряется с повышением температуры.
Типы ржавчины
В большей степени коррозии подвержено железо. С точки зрения химии ржавчина — это окислительный процесс (как и горение). Элементы возникающие при окислении в кислородной среде называются Оксиды. Можно выделить 4 основных типа.
1. Желтая ржавчина — химическая формула FeO(OH)H2O (оксид железа двухвалетный). Возникает во влажной, недонасыщенной кислородом среде. Часто встречается под водой. В природе существует в виде минерала вюстита, при этом являясь монооксидом (те содержит 1 атом кислорода).
2. Коричневая ржавчина — Fe2O3 (двойной оксид железа): растет без воды и встречается редко.
3. Черная ржавчина — Fe3O4 (оксид железа четырех валентый). Образуется при малом содержании кислорода и без воды поэтому стабильна и распространяется очень медленно. Этот оксид является ферромагнетиком (при определенных условиях обладает намагниченностью в отсутствие внешнего магнитного поля), поэтому потенциально применим для создания сверх-проводников.4. Красная ржавчина — химическая формула Fe2O3•H2O (оксид железа трехвалентный). Возникает под воздействием кислорода и воды, самый частый тип, процесс протекает равномерно и затрагивает всю поверхность.
В отличии от всех вышеперечисленных не столь опасных для железа видов окисления этот в своей толще образует гидроксид железа, который, начиная отслаиваться, открывает для разрушения все новые слои металла. Реакция может продолжатся до полного разрушения конструкции.
Применяется при выплавке чугуна и как краситель в пищевой промышленности. Встречается в природе в естественном виде под названием гематид.
Несколько видов ржавления могут протекать одновременно, не особо мешая друг другу.
Химическая и электрохимическая коррозия
Железо ржавеет, если в нем есть добавки и примеси (например, углерод) и при этом контактирует с водой и кислородом. Если же в воде растворена соль (хлорида натрия и калия), реакция становится электрохимической и процесс ржавления ускоряется.
Массовое применение этих солей как в бытовой химии так и для борьбы с льдом и снегом делают электрохимическую коррозию очень распространенным и опасным явлением: потери в США от использования солей в зимний период составляют 2,5 млрд. долларов.
При одновременном воздействии воды и кислорода образуется гидроксид железа, который, в отличие от оксида, отслаивается от металла и никак его не защищает. Реакция продолжается либо до полного разрушения железа, либо пока в системе не закончится вода или кислород.
Электрохимическую коррозию могут вызывать блуждающие токи, возникающие при утечке из электрической цепи части тока в водные растворы или в почву и оттуда — в конструкции из металла.
В тех местах, где блуждающие токи выходят из металлоконструкций обратно в воду или в почву, происходит разрушение металлов. Особенно часто блуждающие токи возникают в местах движения наземного электротранспорта (например, трамваев и ж/д локомотивов на электрической тяге).
Всего за год блуждающие токи силой в 1А способны растворить железа — 9,1 кг, цинка — 10,7 кг, свинца — 33,4 кг.
Во второй части статьи мы расскажем, как вы можете защитить свои металлоконструкции от этой напасти или победить ее, если она уже атакует.
Коррозия меди: причины ржавления и способы защиты
Изделия из меди используются человеком на протяжении нескольких веков. В дореволюционные времена цена этого металла приравнивалась к стоимости золота, настолько дорогим было его производство. Сейчас медь намного подешевела, поэтому из нее, кроме украшений, делают посуду, интерьерные аксессуары и иные предметы.
Коррозия меди, в отличие от железа, развивается медленно благодаря ее устойчивости к данному явлению, и все-таки иногда приходится принимать меры по очистке изделий от некрасивого налета.
Под коррозией понимают процесс разрушения металла под действием агрессивных факторов окружающей среды.
В той или иной степени ржавеют все металлы, сплавы, в результате чего на них появляются ржавчина и участки нарушения целостности (дыры).
Портиться со временем способны и неметаллы: примером можно назвать старение резины или пластика от взаимодействия с кислородом, при частых контактах с водой, перепадами температур.
Основной причиной коррозии считается термодинамическая неустойчивость металла к влиянию физических факторов или химических веществ, которые присутствуют в контактной среде.
По сравнению с железом медь окисляется намного меньше, но при увеличении температуры этот процесс значительно ускоряется.
При регулярном нахождении в среде с температурой выше +100 градусов любой металл ржавеет в несколько раз быстрее.
Коррозийные свойства меди
Медь – металл с высокими пластическими свойствами, имеющий красно-золотистый цвет, а после удаления оксидной пленки – чуть розоватый. По электропроводности он уступает лишь серебру, также характеризуется высокой теплопроводностью. Благодаря низкому удельному сопротивлению медь применяется в электротехнике: идет на изготовление медных пластинок, проволоки, обмотки двигателей.
Из-за высоких антикоррозионных качеств металл включается в сплавы для улучшения их технических характеристик (бронза, латунь и другие). В гальванической среде медь становится катодом, вступает в электрохимические процессы и вызывает ускоренное ржавление прочих металлов.
Медь – неактивный химический элемент, поэтому практически не взаимодействует с воздухом, водой (пресной, морской). Если воздух сухой, на поверхности материала формируется оксидная пленка толщиной до 50 мн.
Медное изделие темнеет, становится коричневым или зеленоватым, это называется патиной. В ряде случаев патина воспринимается как декоративное покрытие.Интенсивность коррозии низкая при контакте с разбавленной соляной кислотой, но при реакции с рядом иных кислот, с галогенами, «царской водкой» металл окисляется с образованием карбоната меди.
Условия разрушения материала
Несмотря на устойчивость к порче, даже медные изделия при определенных условиях могут ржаветь. Меньше всего подобные явления выражены во влажном воздухе, воде, почве, больше – в кислой среде.
Серьезно снизить коррозию можно путем лужения – покрытия меди слоем олова. Качественное лужение дает надежную защиту от повреждений, повышает коррозионную стойкость, делает материал не подверженным действию высоких температур, дождя, града, снега. Срок службы луженых изделий составляет более 100 лет без потери первоначальных свойств.
Влияние воды
Скорость коррозии меди в воде сильно зависит от наличия оксидной пленки на ее поверхности, а также от степени насыщенности воды кислородом. Чем больше содержание последнего, тем интенсивнее протекает разрушение материала.
В целом, медь считается стойкой к вредному воздействию соленой и пресной воды, и пагубно влияют на нее только растворенные ионы хлора, низкий уровень pH.
Прочность, неподверженность ржавлению позволяет применять материал для изготовления трубопроводов.
Если на поверхности изделия, покрытого медью, имеется коричневая или зеленая оксидная корка, разрушающие вещества в малой степени проникают внутрь. Обычно оксидный слой формируется спустя 60 дней нахождения металла в воде. Более прочной считается зеленая корка (карбонатная), рыхлой и менее крепкой – черная (сульфатная).
В морской воде уровень коррозии практически такой же, как и в пресной. Лишь при ускорении движения жидкости коррозия становится ударной, поэтому – более интенсивной. Медь – материал, который не способен обрастать морскими микроорганизмами, ведь его ионы губительны для моллюсков, водорослей. Это свойство металла используется в судоходстве, рыбном хозяйстве.
Воздействие кислот и щелочей
В щелочах медь не портится, ведь материал сам по себе является щелочным, зато кислоты для нее являются самыми пагубными по воздействию. Наиболее значимая и быстрая коррозия происходит при контакте с серой и ее кислотными соединениями, а азотная кислота и вовсе полностью разрушает структуру материала.
В концентрированных кислотах медь растворяется, поэтому при изготовлении оборудования для нефтегазовой промышленности требует дополнительной защиты. С этой целью применяются ингибиторы – замедлители химических реакций:
- Экранирующие – формируют пленку, которая не позволяет кислотам достигать медной поверхности.
- Окислительные – превращают верхний слой в окись, которая будет вступать в реакцию с кислотами без вреда для самого металла.
- Катодные – увеличивают перенапряжение катодов, чем замедляют реакцию.
Коррозия в почве и влажном воздухе
В почве проживает множество микроорганизмов, которые вырабатывают сероводород, поэтому среда тут кислая, скорость коррозии меди возрастает. Чем более отклонено значение pH в сторону закисления, тем быстрее протекают процессы разрушения.
Если грунт насыщен кислородом, металл окисляется, но ржавеет меньше. При длительном нахождении медных изделий в земле они зеленеют, становятся рыхлыми и могут даже рассыпаться.
Краткосрочное пребывание в почве вызывает появление патины, от которой предмет можно очистить.
Влажный воздух плохо сказывается на состоянии материала только при долгом контакте, а вначале тоже вызывает появление патины (оксидного слоя). Исключение составляет пар, насыщенный хлоридами, сульфидами, углекислотой – в нем коррозия развивается стремительнее.
Почему изделия из меди необходимо регулярно чистить
Медные турки, ковши, самовары отличаются высокой теплопроводностью, потому нагрев в них протекает равномерно, а продукты готовятся быстрее. Это обуславливает высокую популярность изделий в быту.
Потребность в чистке медных предметов обусловлена утратой ими внешней привлекательности со временем.
Особенно быстро тускнеют и теряют естественный цвет изделия, находящиеся на воздухе или часто нагревающиеся.
Окисная пленка – патина – популярна лишь там, где требуется придание вещам винтажного облика, стилизация под старину. В противном случае она портит вид посуды, утвари, украшений и статуэток.
Чтобы устранить оксидный налет, элементы потемнения и вернуть блеск, придется периодически чистить предметы.Также очищение требуется для исключения попадания в еду вредных соединений, которые могут присутствовать в черном или зеленом слое.
Эффективные методы очистки меди
Провести чистку медных предметов несложно, для этого не понадобятся дорогостоящие средства. Вот самые популярные методики, применяемые в домашних условиях:
- Кетчуп. Взять немного томатного кетчупа, смазать им изделие, оставить на две минуты. После ополоснуть струей воды.
- Раствор для мытья посуды. Намылить хозяйственную губку обычным средством для посуды, тщательно протереть поверхность, смыть водой. Этот способ лучше всего подходит для изделий, которые лишь немного потускнели.
- Лимон. Натереть медную поверхность долькой лимона, после пройтись по ней щеткой с жесткими ворсинками и помыть водой.
- Уксус и мука. Влить в чашку немного уксуса, добавить муку до получения теста средней густоты. Смазать медь тестом, оставить до высыхания, потом удалить остатки, а изделие натереть мягкой тряпочкой.
- Уксус и соль. Налить в кастрюлю из нержавеющей стали уксус 9%, всыпать немного соли, дать закипеть. Огонь выключить, в раствор положить медный предмет, не убирать его до остывания жидкости. Этот способ подходит для сильно загрязненных поверхностей.
Чистка монет из меди
Медные монеты представляют собой антиквариат, и в наше время не выпускаются. Нередко их приходится чистить, чтобы вернуть привлекательный вид.
Если монета контактировала со свинцом, налет на ней может быть желтоватым. В таком случае он прекрасно очищается столовым уксусом (9%).
Зеленый налет убирают раствором лимонной кислоты (10%) или соком лимона, коричневый – аммиаком, углекислым аммонием.
Нужно помнить, что порой слой патины придает монетам более благородный и винтажный вид, поэтому удалять его желательно не всегда. Некоторые, напротив, стараются искусственно состарить деньги домашним способом.
Для этого надо взять литр дистиллированной воды, 5 г аптечной марганцовки, 50 г медного купороса. Раствор нагреть, не кипятя, бросить в него монеты, оставить до достижения нужного оттенка. Для закрепления эффекта высохшие деньги обработать смесью бензола и спирта (1:1).
После монеты обретут красивый состаренный облик и смогут украсить любую коллекцию предметов антиквариата.
Почему ржавеет нож. Причины, способы устранения ржавчины
Большинство взрослых людей каждый день пользуются ножами. Они могут быть абсолютно разными — складными EDC, мощными охотничьими, обычными кухонными.
Что объединяет все эти ножи, так это то, что у них есть клинок, который может ржаветь. Конечно, какая-то сталь ржавеет меньше, какая-то больше.
Но при определенных условиях, даже на Sandvik 12C27 могут появиться предательские рыжие пятна.
Что такое ржавчина?
Прежде всего разберемся, что такое ржавчина. Ржавчиной называется оксид железа, обозначаемый химической формулой Fe2O3.
Он образуется, когда железо из вашего стального клинка соединяется с кислородом из атмосферы.
Если говорить более подробно, то ржавчина это гидратированный оксид железа (III), также известный как оксид железа (Fe2O3), он возникает, когда железо реагирует с кислородом и водой — эта реакция называется окислением.
Теперь, когда мы знаем, что эта рыжая поверхность является оксидом железа, разберемся при каких условиях ржавеет нож. Для этого необходимы три вещи: кислород, железо и вода.Кислород поступает из атмосферы, он присутствует в воздухе вокруг нас. Железо является основным материалом в стальных клинках. Вода не обязательно должна быть в жидком виде.
Влажного воздуха будет достаточно, чтобы вызвать ржавчину.
Почему некоторые стали ржавеют сильнее?
Большинство типов сталей для клинка можно классифицировать или как нержавеющие или как углеродистые.
Углеродистая сталь — это сталь с повышенным содержанием углерода. Стали могут содержать примеси различных металлов.
Тем не менее, именно процент углерода, содержащийся в клинке, играет в процессе окисления главную роль. Обычно клинки из углеродистой стали содержат от 0,5 до 1,5% углерода. Это делает нож очень прочным и долговечным.
Но из-за того, что углерод также реагирует с кислородом воздуха, клинки из такой стали гораздо больше подвержены коррозии.
Клинки из нержавеющей стали содержат различные присадки, например хром, содержание которого обычно составляет от 12,5% до 13,5%. Это создает оксидный слой на поверхности клинка, который предотвращает дальнейшее окисление стали.
В результате коррозия замедляется, поэтому сталь и называется «нержавеющая». Ножи из нержавеющей стали являются хорошим выбором для агрессивных сред, таких как море. Тем не менее, ножи из нержавейки также могут ржаветь, особенно в суровых условиях.
Существуют и другие материалы для клинков, например титан или керамика. Поскольку они не содержат железа, они не ржавеют и нож не будет подвержен коррозии.
Другой фактор, который следует учитывать, является покрытие клинка.
Некоторые ножи имеют специальные покрытия, например из нитрида титана или оксида алюминия, которые делают их более устойчивыми к коррозии.
Опасна ли ржавчина?
Ржавчина сама по себе не опасна, и вы не умрете, если съедите что-нибудь порезанное ржавым ножом. Однако, особо сильная коррозия может снизить качество клинка, и сделать его более хрупким.
Способы удаления ржавчины
1. ХИМИЧЕСКИЕ РАСТВОРИТЕЛИ
Есть много типов химикатов, которые можно использовать для удаления ржавчины с вашего ножа. Популярным является WD-40 (однако он токсичен, поэтому лучше потом не нарезать еду этим ножом).
Шаг 1: Очистите нож от пятен или загрязнений.
Шаг 2: Опрыскайте клинок растворителем.
Шаг 3: Используйте тонкую наждачную бумагу, чтобы очистить клинок от пятен ржавчины.
Шаг 4: При необходимости повторите, затем протрите, промойте и высушите нож.
2. СОДА
Шаг 1: Намочите область с коррозией водой и посыпьте пищевой содой. Пищевая сода должна прилипать к влажной зоне. Аккуратно постучите ножом, чтобы лишняя часть упала.
Шаг 2: Используйте влажную чистящую салфетку, чтобы вычистить область, покрытую пищевой содой.Шаг 3: После нескольких минут очистки ржавчина должна исчезнуть. Повторите при необходимости, затем ополосните нож водой и вытрите его тканью.
3. УКСУС
Шаг 1: Налейте уксус в широкий контейнер.
Шаг 2: Погрузите нож (или только клинок) в уксус. Удерживать в течение 5 минут. Слишком долго лучше не оставлять, это может повредить клинок.
Шаг 3: Протрите лезвие тканью. Затем промыть и высушить нож.
4. НАЖДАЧНАЯ БУМАГА
Наждачная бумага с мелкой зернистостью (3000) обычно хорошо работает с небольшими пятнами ржавчины.
Просто возьмите маленький кусочек тонкой наждачной бумаги и аккуратно протрите им коррозионное пятно, пока оно не исчезнет. Убедитесь, что вы используете мелкую наждачную бумагу.
В противном случае можно повредить отделку клинка или сам клинок, в частности поцарапать или затупить его.
5. КАРТОФЕЛЬ
Картофель содержит щавелевую кислоту, которая может растворять ржавчину. Можно оставить нож между двух половинок картофеля на несколько часов. И после этого стереть ржавчину тканью.
6. ЛУК
Лук содержит сульфеновые кислоты, которые могут помочь растворить оксид железа. Действовать нужно также как в случае с картофелем.
Заключение
Для того, чтобы ваш любимый нож никогда не подвергся коррозии, за ним нужно правильно ухаживать.
Самые основные советы по уходу за ножом:
- Во-первых, мыть после использования. Независимо от того, резали ли вы древесину или потрошили рыбу, у вас всегда останется какая-то часть загрязнения на клинке. Удалите остатки водой и мягкой стороной губки, затем тщательно вытрите нож тканью. Не пропускайте этот шаг, иначе ваш нож обязательно заржавеет.
- Во-вторых, храните соответствующим образом. В помещении нож лучше всего хранить в каком-то сухом ящике или шкафу. Если вы на улице, держите его в кармане, ножнах или специальных чехлах. Стараться не допускать попадания влаги.
- Использовать специальное масло для ножа, чтобы предотвратить контакт между клинком и атмосферой.
Надеемся, что эта статья поможет вам удалить ржавчину с вашего ножа. Помните, что лучший способ защитить нож от ржавчины — это предотвратить её появление. Убедитесь, что вы всегда держите свой нож в идеальном состоянии, чтобы он работал как можно лучше.
Теперь, когда ваш нож чист, пришло время его заточить.
Почему ржавеет металл — Справочник металлиста
Давайте вспомним, откуда берётся железо или, например, алюминий. Правильно, их выплавляют из руды — железной, марганцевой, магниевой, алюминиевой и др. Металлы в рудах содержатся в основном в виде оксидов, гидроксидов, карбонатов, сульфидов, то есть в виде химических соединений с кислородом, водой, серой и пр.
В природе в металлическом, или свободном, состоянии в основном можно встретить лишь золото, платину, иногда серебро. Эти металлы устойчивы, то есть не стремятся (или слабо стремятся) образовывать химические соединения. Наверное, по этой причине они получили название благородных.
Что же до подавляющего большинства металлов, то, чтобы они находились в свободном состоянии, их надо восстановить из природных рудных соединений, то есть выплавить. Выходит, выплавляя металл, мы переводим его из устойчивого состояния в неустойчивое.
Вот он и стремится вернуться в исходное состояние — окислиться. Это и есть коррозия — естественный для металлов процесс разрушения при взаимодействии с окружающей средой. Частный случай коррозии — ржавление — образование на железе гидроксида железа Fe(ОН)3.
Этот процесс может протекать только в присутствии влаги (воды или водяных паров).
Но почему же тогда не рушатся в одночасье мосты, не рассыпаются мгновенно самолёты и автомобили? Да и кастрюльки со сковородками не превращаются на наших глазах в рыжий, чёрный или серый порошок.
К счастью, реакции окисления металлов протекают не столь стремительно. Как и любой процесс, они идут с определённой скоростью, порою очень небольшой. Более того, есть много способов замедлить коррозию.
Плечо друга
Вы замечали, что на нержавеющей стали не бывает ржавчины, хотя её основу составляет то же самое железо, которое при окислении (в присутствии воды или водяного пара) превращается в рыжий мохнатый гидроксид. Тут есть одна хитрость: нержавеющая сталь — это сплав железа с другими металлами. Введение в металлические сплавы элементов для придания им тех или иных свойств называется легированием.
Основной легирующий элемент, который добавляют к обычной (углеродистой) стали, чтобы получить нержавеющую, — хром. Этот металл тоже стремится окислиться, что он с успехом и делает гораздо охотнее и быстрее, чем само железо.
При этом на поверхности нержавеющей стали быстро образуется плёнка из оксида хрома.
В отличие от рыхлой ржавчины компактный тёмный оксид хрома не даёт агрессивным ионам окружающей среды проникать к поверхности металла, то есть оксид попросту прикрывает собой металл, и процесс коррозии прекращается.Такие оксидные плёнки называются защитными. В нержавеющих сталях хрома должно быть строго определённое количество, но не менее 13%. Кроме хрома в нержавеющие стали часто добавляют никель, молибден, ниобий и титан.
Благодаря защитным плёнкам многие металлы неплохо выдерживают воздействие различных сред. Возьмём, к примеру, алюминиевую кастрюльку, в какой кипятят молоко или варят манную кашу.
Обычно такая кастрюлька не блестит, подобно хрому или нержавеющей стали, и имеет слегка белёсый цвет.
Дело в том, что на алюминии, как и на других металлах, на воздухе всегда образуется белёсая оксидная плёнка (оксид алюминия), которая отлично защищает металл от коррозии.
Такие плёнки называются пассивными, а металлы, на которых они самопроизвольно образуются, — пассивирующимися. Если же алюминиевую кастрюльку почистить металлической щёткой, налёт исчезнет и появится металлический блеск. Но очень быстро поверхность вновь покроется плёнкой оксида алюминия и станет белёсой.
Укрощение активных
Перевести металл в пассивное состояние можно принудительным образом.
Например, железо помимо незащитных гидроксида железа или же низших оксидов (закиси и закиси-окиси) при определённых условиях образует высший оксид — окись железа (Fe2О3).
Этот оксид неплохо защищает металл и его сплавы при высоких температурах на воздухе, он же (одна из его форм) «ответственен», как считают специалисты, за пассивное состояние железных сплавов во многих водных средах.
Устойчивость нержавеющей стали в крепкой серной кислоте связана именно с пассивированием стали в этой весьма агрессивной среде.
Если же поместить нержавейку в слабый раствор серной кислоты, сталь начнёт корродировать.Парадокс объясняется просто: крепкая серная кислота обладает сильными окислительными свойствами, благодаря чему на поверхности нержавеющей стали образуется пассивирующая плёнка, а в слабой кислоте не образуется.
В случаях, когда агрессивная среда недостаточно «окислительная», используют специальные химические добавки, помогающие образованию на поверхности металла пассивной плёнки. Такие добавки называют ингибиторами или замедлителями коррозии.
Не все металлы способны образовывать пассивные плёнки, даже принудительно. В этом случае добавление в агрессивную среду ингибитора, напротив, удерживает металл в «восстановительных» условиях, в которых его окисление подавляется (оно энергетически невыгодно).
Жертвоприношение
Искусственно поддерживать металл в «восстановительных» условиях можно и иным способом, ведь не всегда есть возможность добавить ингибитор. Возьмём, к примеру, обычное оцинкованное ведро.
Оно сделано из углеродистой стали, а сверху покрыто слоем цинка. Цинк — более активный металл, чем железо, значит, он охотнее вступает в химические реакции.
Поэтому цинк не просто механически изолирует стальное ведро от окружающей среды, но и «принимает огонь на себя», то есть корродирует вместо железа.
Для подземных коммуникаций «восстановительные» условия создают с помощью электрохимической защиты: накладывают на защищаемый металл отрицательный (катодный) потенциал от внешнего источника тока, так что на металле прекращается процесс окисления.
Однако зачем нужно столько разных сложных способов защиты металлов? Разве нельзя просто покрасить металл или нанести на него эмаль?
Во-первых, всё покрасить невозможно. А во-вторых… Возьмём для примера эмалированную кастрюлю или автомобиль.
Если кастрюля, вырвавшись из рук, с грохотом упадёт на пол и отшибёт себе эмалированный бочок, то под отколовшейся эмалью будет зиять «чёрный глаз», края которого постепенно окрасятся в предательский рыжий цвет — скол покроется ржавчиной.
Не лучшая судьба ждёт и автомобиль, если вдруг в его лаковом боку (а чаще на стыке с днищем) образуется небольшая дырочка в слое лака.
Этот канал поступления к корпусу агрессивных агентов — воды, кислорода воздуха, сернистых соединений, соли — немедленно заработает, и корпус начнёт ржаветь. Вот и приходится владельцам автомобилей делать дополнительную антикоррозионную обработку.
Невидимый злодей
Так, может, проблема коррозии металлов решена? Увы, не всё так просто. Любые коррозиестойкие сплавы устойчивы только в определённых средах и условиях, для которых они разработаны.
Например, большинство нержавеющих сталей отлично выдерживают кислоты, щёлочи и очень «не любят» хлориды, в которых они часто подвергаются местным видам коррозии — язвенной, точечной и межкристаллитной. Это очень коварные коррозионные разрушения.
Конструкция из красивого, блестящего металла без намёка на ржавление может однажды рухнуть или рассыпаться. Всё дело в мельчайших точечных, но очень глубоких поражениях.
Или же в микротрещинах, не видимых глазом на поверхности, но пронизывающих буквально всю толщу металла.Не менее опасно для многих сплавов, не подверженных общей коррозии, так называемое коррозионное растрескивание, когда внезапно конструкцию пронизывает огромная трещина. Такое случается с металлами, испытывающими длительные механические нагрузки — в самолётах и вертолётах, в различных механизмах и строительных конструкциях.