Температура горения титана

Температура горения титана

Температура горения титана

Титан (Titanium),Ti,—химический элемент IV группы периодическойсистемы элементов Д. И. Мен­делеева.Порядковый номер 22, атомный вес 47,90.Состоит из 5 устойчивых изотопов; полученытакже искус­ственно радиоактивныеизотопы.

В 1791 году английский химик У. Грегорнашёл в песке из местечка Менакан(Англия, Корнуолл) новую «зем­лю»,названную им менакановой. В 1795 годунемецкий хи­мик М. Клаирот открыл вминерале рутиле неиз­вестную ещеземлю, металл которой он назвал Титан[в греч.

мифологии титаны — дети Урана(Неба) и Геи (Земли)]. В 1797 году Клапротдоказал тождество этой земли с открытойУ. Грегором.

Чистый титан выде­лен в1910 году американским химиком Хантеромпосредством восстановления четырёххлористоготитана натрием в же­лезной бомбе.

Нахождение в природе

Титан относится к числу наиболеераспространённых в природе элементов,его содержание в земной коре составляет0,6% (весовых). Встречается главным образомв ви­де двуокиси TiO2или еёсоединений — титанатов.

Известно свыше60 минералов, в состав которых входиттитан Он содержится также в поч­ве,в животных и растительных организмах.Ильме­нитFeTiO3ирутилTiO2служатосновным сырьём для получения титана.

В качестве источника титана приобретаютзначение шлаки от плавкититано-магнетитови ильменита.

Физические и химические свойства

Титан существует в двух состояниях:аморфный — темносерый порошок, плотность3,392—3,395г/см3, и кристаллический,плотность 4,5 г/см3. Для кристаллическоготитана известны две модификации с точкойперехода при 885° (ниже 885° устойчиваягексагональная фор­ма, выше —кубическая); t°плоколо 1680°;t°кипвыше 3000°.

Титанактивно поглощает газы (водород, кислород,азот), которые делают его очень хрупким.Технический металл поддаётся горячейобработ­ке давлением. Совершенночистый металл может быть прокатан нахолоду. На воздухе при обыкновеннойтемпературе титан не изменяется, принакаливании образует смесь окисиTi2O3и нитридаTiN. В токекислорода при красном калении окисляетсядо двуокисиTiO2.

Привысоких температурах реаги­рует суглеродом, кремнием, фосфором, серой идр. Устойчив к морской воде, азотнойкислоте, влажному хлору, органическимкислотам и сильным щелочам. Рас­творяетсяв серной, соляной и плавиковой кислотах,лучше всего — в смесиHFиHNO3. Добавление ккислотам окислителя предохраняет металлот кор­розии при комнатной температуре.

Галогениды четырёхвалентного титана,за исключениемTiCl4— кристаллические тела, легкоплавкиеи летучие в водном растворе гидрализованы,склонны к образованию комплексныхсоединений, из которых в технологии ианалитической практике имеет значениефтортитанат калияK2TiF6.

Важное значение имеют карбидTiCи нитридTiN— металлоподобныевещества, отличающиеся большой твёрдостью(карбид титан тверже карборунда),туго­плавкостью (TiC,t°пл= 3140°; TiN,t°пл= 3200°) и хо­рошей электропроводностью.

Химический элемент №22. Титан

Электронная формула титана имеет вид:1s2|2s22p6|3s23p63d2|4s2.

Порядковый номер титана в периодическойсистеме химических элементов Д.И.Менделеева – 22. Номер элемента обозначаетзаряд ярда, следовательно у титана зарядядра — +22, масса ядра – 47,87.

Титан находитсяв четвертом периоде, в побочной подгруппе.Номер периода указывает на количествоэлектронных слоев. Номер группы обозначаетколичество валентных электронов.

Побочная подгруппа указывает на то, чтотитан относится к d-элементам.

Титан имеет два валентных электрона наs-орбитали внешнего слояи два валентных электрона наd-орбиталипредвнешнего слоя.

Квантовые числа для каждого валентногоэлектрона:

3d13d24s14s2
N3344
l22
ml-2-1
ms+1/2+1/2+1/2-1/2

Распределение валентных электронов поэнергетическим уровням:

4s3d

В возбужденном состоянии один электронс 4s-орбитали перескакиваетна 3d, образуя ковалентностьравную четырем:

4s3d

С галогенами и водородом Ti(IV)образует соединения видаTiX4,имеющиеsp3→q4вид гибридизации.

Титан – металл. Является первым элементомd-группы. Наиболее устойчивыми распространенным являетсяTi+4.

Так же существуют соединения с болеенизкими степенями окисления –Ti0,Ti-1,Ti+2,Ti+3, но эти соединениялегко окисляются воздухом, водой илидругими реагентами вTi+4.

Отрыв четырех электронов требует большихзатрат энергии, поэтому ионTi+4реально не существует и соединенияTi(IV) обычновключают связи ковалентного характера.Ti(IV) внекоторых отношениях сходен с элементами–Si,Ge,SnиPb, особенно сSn.

Титан и его характеристики

Титан очень распространен в природе; содержание титана в земной коре составляет 0,6% (масс.), т.е. выше, чем содержание таких широко используемых в технике металлов, как медь, свинец и цинк.

Минералы, содержащие титан, находятся в природе повсеместно. Важнейшими из них являются: титаномагнетиты FeTiO3×nFe3O4, ильменит FeTiO3, сфен CaTiSiO5 и рутил TiO2.

В виде простого вещества титан представляет собой серебристо-белый металл (рис. 1). Относится к легким металлам. Тугоплавок. Плотность – 4,50 г/см 3. Температуры плавления и кипения равны 1668oС и 3330oС, соответственно. Коррозионно-устойчив при на воздухе при обычной температуре, что объясняется наличием на его поверхности защитной пленки состава TiO2.

Рис. 1. Титан. Внешний вид.

Атомная и молекулярная масса титана

Относительной молекулярная масса вещества (Mr) – это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (Ar) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии титан существует в виде одноатомных молекул Ti, значения его атомной и молекулярной масс совпадают. Они равны 47,867.

Изотопы титана

Известно, что в природе титан может находиться в виде пяти стабильных изотопов 46Ti, 47Ti, 48Ti, 49Ti и 50Ti. Их массовые числа равны 46, 47, 48, 49 и 50 соответственно. Ядро атома изотопа титана 46Ti содержит двадцать два протона и двадцать четыре нейтрона, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы титана с массовыми числами от 38-ми до 64-х, среди которых наиболее стабильным является 44Ti с периодом полураспада равным 60 лет, а также два ядерных изотопа.

Ионы титана

На внешнем энергетическом уровне атома титана имеется четыре электрона, которые являются валентными:

1s22s22p63s23p63d24s2.

В результате химического взаимодействия титан отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Ti0 -2e → Ti2+;

Ti0 -3e → Ti3+;

Ti0 -4e → Ti4+.

Молекула и атом титана

В свободном состоянии титан существует в виде одноатомных молекул Ti. Приведем некоторые свойства, характеризующие атом и молекулу титана:

Энергия ионизации атома, эВ6,82
Относительная электроотрицательность1,54
Радиус атома, нм0,147

Сплавы титана

Главное свойство титана, способствующее его широкому применению в современной технике – высокая жаростойкость как самого титана, так и его сплавов с алюминием и другими металлами. Кроме того, эти сплавы жаропрочностью – стойкостью сохранять высокие механические свойства при повышенных температурах. Все это делает сплавы титана весьма ценными материалами для самолето- и ракетостроения.

При высоких температурах титан соединяется с галогенами, кислородом, серой, азотом и другими элементами. На этом основано применение сплавов титана с железом (ферротиттана) в качестве добавки к стали.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Титан

Тита́н (лат. Titanium; обозначается символом Ti) — элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов, с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) — лёгкий металл серебристо-белого цвета.

История

Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1789), выделил новую «землю» (окись) неизвестного металла, которую назвал менакеновой. В 1795 г.

немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — окислы одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л.

Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные окислы титана.
Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И.

де Бур в 1925 году термическим разложением паров иодида титана TiI4.

Происхождение названия

Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот, в соответствии со своими взглядами на химическую номенклатуру в противоход французской химической школе, где элемент старались называть по его химическим свойствам.

Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.

Однако согласно другой версии, публиковавшейся в журнале «Техника-Молодежи» в конце 1980-х, новооткрытый металл обязан своим именем не могучим титанам из древнегреческих мифов, а Титании — королеве фей в германской мифологии (жена Оберона в шекспировском «Сне в летнюю ночь»). Такое название связано с необычайной «лёгкостью» (малой плотностью) металла.

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд.

Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов.

Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:
TiO2 + 2C + 2Cl2 =TiCl2 + 2CO

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

При какой температуре плавится титан

Температура горения титана

Титан считается самым прочным тугоплавким металлом, сохраняющим пластичность. Он прочнее железа и алюминия. Впервые сплав был получен русским ученым в 1875 году.

В 1925-м голландскому химику удалось получить чистый 99,9% металл. Благодаря высокой температуре плавления, титан незаменим в космической отрасли, авиастроении.

Легкий, химически нейтральный, он используется и в других отраслях.

Характеристики титановых сплавов

Для легирования титана используют несколько компонентов:

  • Алюминий – самая распространенная добавка. Он повышает удельную прочность, упругость, сопротивление ползучести.
  • Олово замедляет окисление при нагреве, повышает пластичность, свариваемость.
  • Благодаря цирконию, Ti-Al-Zr деформируется при комнатной температуре.
  • Марганец повышает способность к деформации.
  • Кремний улучшает трещиностойкость.
  • Ванадий – свариваемость.
  • Система Ti-Al-Mo-Cr-Fe-Si – высокопрочная. Это металл мартенситного класса.
  • Молибден увеличивает жаропрочность титана.

Чистый титан имеет предел прочности до 450 МПа, легирующие добавки способны повысить ее до 2000 МПа. При охлаждении у титана повышается прочность на изгиб. При комнатной температуре составляет 700 МПа, около -200°С возрастает до 1100 МПа.

Физические свойства

Основные характеристики титана:

  • температуры: плавления 1668 градусов Цельсия, кипения – 3227;
  • предел текучести: от 250 до 380 МПа;
  • упругость – 110 Гпа, различается в разных направлениях;
  • средняя твердость сплавов по НВ – 103;
  • плотность: при комнатной температуре 4500 кг/м3, при температуре плавления – 4120 кг/м3;
  • теплоемкость – 531 Дж на один килограмм при нагреве на градус;
  • теплопроводность – 18 Вт/(м·град);
  • удельное сопротивление – 42,1·10-6 Ом·см.

При охлаждении до 3,8°К (-270°С) металл становится сверхпроводником.

Химические свойства

В твердом состоянии Тi химически устойчив, не окисляется при высокой влажности, морской атмосфере, при контакте с агрессивными средами. При нагреве до температуры плавления становится активным. Взаимодействует со всеми компонентами воздуха:

  • кислородом, образуются твердые оксиды;
  • азотом, он упрочняет структуру, повышает предел прочности, критическая концентрация 0,2%, выше этого показателя металл становится хрупким;
  • водород ухудшает технологические свойства;
  • углерод повышает температуру фазовых изменений.

При нагреве до температуры плавления металл необходимо изолировать.

Область применения

Титан и сплавы на основе его применяются во многих областях: химической, металлургической. Это конструкционный материал космонавтики, оборонной промышленности, авиации. Из него делают медицинские инструменты, насадки оборудования. Пластины вшивают в бронежилеты, делают из него защитные экраны.

Литье титана

Во время нагрева до температуры плавления титан активно реагирует с компонентами воздуха.

Чтобы этого не происходило, воздух в печах откачивали, создавали вакуум. Остатки воздуха стали вытеснять инертными газами: смесью аргона и гелия. На промышленных литейных установках остаточное давление инертных газов колеблется от 1,33 до 0,13 Па.

Разработано несколько технологий:

В вакуумной камере металл расплавляют, разливают по формам. Охлаждают до температуры, когда металл теряет химическую активность, образует кристаллическую структуру.

Метод вакуумного литья (МВЛ) по выплавляемым моделям заключается в использовании выплавляемых или выжигаемых форм. На поверхности модели создают огнеупорную оболочку. Отливки получаются максимально приближенной формы.

Технология оболочечного литья предусматривает использование тонкостенных разъемных форм. Их устанавливают на разогретую модельную плиту, чтобы покрыть термоактивной смолой. Заливка производится вертикально и горизонтально.

Специально разрабатывается температурный режим остывания отливок. Предусмотрено равномерное структурирование по всему объему, чтобы в литье не возникали внутренние напряжения.

Применяемое оборудование и материалы

Титан при нагревании становится активным восстановителем, он способен реагировать с огнеупорной футеровкой. Для плавки металла обычно используют вакуумную гарнисажную печь с электродуговым разогревом.

Это камера с охлаждающим водяным контуром, опоясывающим тигель. Мощные насосы откачивают воздух до нужного значения разряжения. В электрододержатель устанавливают расходуемый электрод-гарнисаж.

Плавка производится при плотности тока 10—30 А/см2.

Электрод – это пруток из спрессованной титановой крошки (порошка) или шихтовый слиток. При розжиге дуги между электродом и дном тигля металл начинает нагреваться до температуры плавления, расплав заполняет тигель, держатель постепенно опускается, чтобы размер дуги оставался стабильным.

Гарнисажем называют слой затвердевшего металла на охлаждаемых стенках тигля, сделанного из токопроводящей меди или графита. Гарнисаж выполняет функцию футеровки, не давая тиглю нагреваться под действием дуги до температуры плавления.

При какой температуре происходит плавление титана?

Температура горения титана

Металлургия — важная отрасль современной промышленности. Чистые металлы и сплавы используются в различных сферах. Большую популярность получают жаропрочные сплавы, которые применяются при изготовлении деталей для самолетов, машин, кораблей, ракет, промышленного оборудования. Температура плавления титана составляет примерно 1650 градусов Цельсия.

Разлив в формы расплавленного титана

Способы получения

Существуют разные способы получения металла из расходного сырья. Что касается получения титана, можно выделить несколько основных методов, которые имеют определенные особенности.

Магниетермический процесс

Магниетермическое восстановление — популярный метод получения металла. Проведение технологического процесса:

  1. Расплавляется оборотный магниевый конденсат.
  2. Сливается конденсат хлористого магния.
  3. При температуре 800 градусов, жидкий тетрахлорид титана с жидким магнием подаются в форму для застывания. Скорость подачи — 2,1–2,3 г/ч см2.

Постепенно температура снижается до 600 градусов.

Гидридно-кальциевый метод

Это промышленный метод восстановления металла. Процесс проведения работ:

  1. При температуре 500 градусов Цельсия металлический кальций насыщается водородом.
  2. Далее его смешивают с двуокисью титана. Компоненты нагревают в реторте, постепенно повышая температуру до 1100 градусов.
  3. Спекшиеся компоненты вымывают из реторты.
  4. Далее проводится обработка соляной кислотой.
  5. Титановый порошок сушат, запекают в индукционных печах при температуре около 1400 градусов.

На спекшуюся массу должно воздействовать давление 10в-3 мм.

Электролизный метод

Способ получения сплава, основанный на применении электрического тока. Напряжение воздействует на ТiO2, ТiСl4. До этого их растворяют с помощью расплавленных солей фторидов.

Йодидный метод

Способ получения металла после термической диссоциации TiJ4. Изначально его получают при реакции паров йода с металлическим титаном.

Чтобы получить сплав высокой чистоты, необходимо применять последний способ получения соединения. Три первых метода позволяют быстро получать технический титан.

Состав и структура

Этот металл проводит электричество, что свидетельствует об упорядоченной структуры металла. При нагревании структура чистого вещества изменяется:

  1. Нагревание до 900 градусов. Появляется плотная гексагональная решетка.
  2. Нагревание свыше 900 градусов. Снижается плотность, решетка становится кубической.

При обычных условиях окружающей среды его поверхность покрывается оксидной пленкой.

Характеристики и свойства

Титан — самый прочный технический материал, который используется в различных направлениях промышленности. Перед тем как начинать использовать этот сплав нужно разобраться с его техническими характеристиками, свойствами. Характеристики:

  1. Низкая плотность. Этот показатель уменьшается при нагревании. До нагрева — 4.51 г. куб см. У жидкого металла показатель плотности составляет 4.12 г. куб см.
  2. Температура плавления — около 1700 градусов.
  3. Температура кипения — около 3227 градусов.

Механические свойства титана:

  1. Прочность при растяжении — 300–450 МПа.
  2. Показатель упругости материала — 110,25 Гпа.
  3. Твердость — 103 НВ.
  4. Предел текучести — 250–380 МПа.
  5. Теплоемкость — 0,523 кдж.

Электрические характеристики сплава:

  1. Магнитная восприимчивость — 3,2 10-6 Г-1.
  2. Удельное электросопротивление — 42,1·10-6 ом·см.

Химические свойства титана обуславливают его высокую коррозийную устойчивость. На его поверхности образуется оксидная пленка, которая защищает материал от воздействия влаги. Толщина слоя доходит — до 15 мкм. Высокую химическую активность сплав проявляет при воздействии азота. При нагревании вступает в реакцию с любыми газами, которые содержатся в составе атмосферы.

Этот металл используется при изготовлении медицинских инструментов, протезов. Диоксид этого материала применяется в пищевой промышленности, косметологии. Его не добавляют в биологические добавки, чтобы не навредить организму человека при приеме внутрь.

Титан — САМЫЙ ПРОЧНЫЙ МЕТАЛЛ НА ЗЕМЛЕ!

Титан — уникальный сплав, который имеет высокий показатель прочности, малый вес. Сложности получения этого материала не перекрывают его сильных сторон, за которые он ценится в разных направлениях промышленности.

Титан / Titanium. Химия – просто При какой температуре происходит плавление титана? Ссылка на основную публикацию

Физические характеристики и свойства одного из самых твердых металлов — титана

Температура горения титана

Титан – элемент 4 группы 4 периода. Переходный металл, проявляет и основные, и кислотные свойства, довольно широко распространен в природе – 10 место.

Наиболее интересным для народного хозяйства является сочетание высокой твердости металла и легкости, что делает его незаменимым элементом для авиастроения.

Данная статья расскажет вам о маркировке, легирующих и иных свойствах металла титана, даст общую характеристику и интересные факты о нем.

По внешнему виду металл больше всего напоминает сталь, однако механические его качества выше. При этом титан отличается малым весом – молекулярная масса 22. Физические свойства элемента изучены довольно хорошо, однако сильно зависят от чистоты металла, что приводит к существенным отклонениям.

Кроме того, имеет значение его специфические химические свойства.

Титан устойчив к щелочам, азотной кислоте, и в то же время бурно взаимодействует с сухими галогенами, а при более высокой температуре – с кислородом и азотом.

Хуже того, он начинает поглощать водород еще при комнатной температуре, если имеется активная поверхность. А в расплаве впитывает кислород и водород настолько интенсивно, что расплавление приходится проводить в вакууме.

Еще одна важная особенность, определяющая физические характеристики – существование 2 фаз состояния.

  • Низкотемпературная – α-Ti имеет гексагональную плотноупакованную решетку, плотность вещества – 4,55 г/куб. см (при 20 С).
  • Высокотемпературная – β-Ti характеризуется объемно-центрированный кубической решеткой, плотность фазы, соответственно, меньше – 4, 32 г/куб. см. (при 900С).

Температура фазового перехода – 883 С.

В обычных условиях металл покрывается защитной оксидной пленкой. При ее отсутствии титан представляет большую опасность. Так, титановая пыль может взрываться, температура такой вспышки 400С. Титановая стружка является пожароопасным материалом и хранится в специальной среде.

Далее мы рассмотрим магнитные, механические, химические и физические свойства титана, его сплавов и их применение.

О структуре и свойствах титана рассказывает видео ниже:

Титан на сегодня является самым прочным среди всех существующих технических материалов, поэтому, несмотря на сложность получения и высокие требования по безопасности к производственному процессу, применяется достаточно широко.

Физические характеристики элемента довольно необычны, однако очень сильно зависят от чистоты.

Так, чистый титан и сплавы активно применяются в ракето- и авиастроении, а технический непригоден, так как из-за примесей теряет прочность при высоких температурах.

Плотность металла

Плотность вещества изменяется в зависимости от температуры и фазы.

  • При температурах от 0 до температуры плавления уменьшается от 4,51 до 4,26 г/куб. см, причем во время фазового перехода повышаете на 0,15%, а затем вновь уменьшается.
  • Плотность жидкого металла составляет 4,12 г/куб. см, а затем уменьшается с повышением температуры.

Температуры плавления и кипения

Фазовый переход разделяет все свойства металла на качества, которые может проявлять α- и β-фазы. Так, плотность до 883 С, относится к качествам α-фазы, а температуры плавления и кипения – к параметрам β-фазы.

  • Температура плавления титана (в градусах) составляет 1668+/-5 С;
  • Температура кипения достигает 3227 С.

Это один из наиболее жаростойких металлов, известных в металлургии.

Далее указана краткая характеристика титана с т.з. механических особенностей.

Горение титана рассмотрено в этом видеоролике:

Титан примерно в 2 раза прочнее железа и в 6 раз – алюминия, что и делает его столь ценным конструкционным материалом. Показатели относятся к свойствам α-фазы.

  • Предел прочности вещества при растяжении составляет 300–450 МПа. Показатель можно увеличить до 2000 МПа, добавив некоторые элементы, а также прибегнув к специальной обработке – закалке и старению.

Интересно то, что высокую удельную прочность титан сохраняет и при самых низких температурах. Более того, при понижении температуры прочность на изгиб растет: при +20 С показатель составляет 700 МПа, а при -196 – 1100 МПа.

  • Упругость металла относительно невелика, что является существенным недостатком вещества. Модуль упругости при нормальных условиях 110,25 ГПа. Кроме того, титану свойственна анизотропия: упругость по разным направлениям достигает разного значения.
  • Твердость вещества по шкале НВ составляет 103. Причем показатель это усредненный. В зависимости от чистоты металла и характера примесей твердость может быть и выше.
  • Условный предел текучести составляет 250–380 МПа. Чем выше этот показатель, тем лучше изделия из вещества противостоят нагрузкам и тем больше сопротивляются износу. Показатель титана превосходит показатель алюминия в 18 раз.

По сравнению с другими металлами, имеющими такую же решетку, металл обладает очень приличной пластичностью и ковкостью.

Далее рассмотрена удельная теплоемкость титана.

Теплоемкость

Металл отличается низкой теплопроводностью, поэтому в соответствующих областях – изготовление термоэлектродов, например, не применяется.

  • Теплопроводность его составляет 16,76 l , Вт/(м × град). Это меньше чем у железа в 4 раза и в 12 раз меньше, чем у алюминия.
  • Зато коэффициент термического расширения у титана ничтожен при нормальной температуре и возрастает при повышении температуры.
  • Теплоемкость металла составляет 0,523 кдж/(кг·К).

Электрические характеристики

Как чаще всего и бывает, низкая теплопроводность обеспечивает и низкую электропроводность.

  • Удельное электросопротивление металла весьма велико – 42,1·10-6 ом·см в нормальных условиях. Если считать проводимость серебра равной 100%, то проводимость титана будет равна 3,8%.
  • Титан является парамагнитом, то есть, его нельзя намагничивать в поле, как железо, но и выталкиваться из поля, как медь он не будет. Свойство это с понижением температуры линейно уменьшается, но, пройдя минимум, несколько увеличивается. Удельная магнитная восприимчивость составляет 3,2 10-6 Г-1. Стоит отметить, что восприимчивость, так же как и упругость образует анизотропию и изменяется в зависимости от направления.

При температуре 3,8 К титан становится сверхпроводником.

Коррозионная стойкость

В нормальных условиях титан отличается очень высокими антикоррозийными свойствами. На воздухе его покрывает слой оксида титана толщиной в 5–15 мкм, что и обеспечивает отличную химическую инертность.

Металл не корродирует в воздухе, морском воздухе, морской воде, влажном хлоре, хлорной воде и многочисленных других технологических растворах и реагентах, что делает материал незаменимым в химической, бумагоделательной, нефтяной промышленности.

При повышении температуры или сильном измельчении металла картина резко меняется. Металл реагирует едва ли не со всеми газами, входящими в состав атмосферы, а в жидком состоянии еще и впитывает их.

Далее рассмотрена токсичность титана.

Титан является одним из самых биологически инертных металлов. В медицине он применяется для изготовления протезов, так как отличается стойкостью к коррозии, легкостью и долговечностью.

Диоксид титана не столь безопасен, хотя используется куда чаще – в косметологической, пищевой промышленности, например.

По некоторым данным – UCLA, исследования профессора патологии Роберта Шистла, наночастицы диоксида титана воздействуют на генетический аппарат и могут способствовать развитию рака.

Причем через кожный покров вещество не проникает, поэтому применение солнцезащитных средств, в составе которых есть диоксид, опасности не представляет, а вот вещество, попадающее внутрь организма – с пищевыми красителями, биологическими биодобавками, может оказаться опасным.

Титан – уникально прочный, твердый и легкий металл с очень интересными химическими и физическими свойствами. Это сочетание настолько ценно, что даже сложности с выплавкой и очисткой титана производителей не останавливают.

О том, как отличить титан от стали, этот видеосюжет и расскажет:

Свойства космического металла титана: низкая плотность, высокая температура плавления и коррозионная стойкость

Температура горения титана

Космический металл, материал будущего, превращающий мечту в реальность — всё это о титане, серебристо-белом, прочном и лёгком.

Занимая девятое место по распространённости в природе, он отлично зарекомендовал себя в аэрокосмической и нефтехимической промышленности, машиностроении и медицине.

Чудо-металл даже открыт был необычно, а изучение его свойств помогло человечеству выйти на новый уровень развития.

Всё началось в 1791 году, когда, независимо друг от друга, одновременно У. Грегор (Англия) и М. Г. Клапрот (Германия) получили двуокись титана, но не сумели выделить из неё чистое вещество.

Минералог и, по совместительству, сельский священник Грегор изучал чёрный железистый песок, найденный в окрестностях своего прихода.

Результатом стало извлечение соединения титана — блестящих крупиц, которые названием «менакин» (от минерала менаканит) увековечили родные места англичанина.

Примерно в это же время химик Клапрот, изучая красные пески, привезённые из Венгрии, нашёл в минерале рутиле новое вещество и назвал его «титан». А, спустя несколько лет, доказал, что рутил и менакеновая земля — одинаковые соединения.

В 1825 году шведским химиком Берцелиусом был получен первый образец металлического титана, но это не позволило продвинуться в исследовании свойств, так как примеси делали образец хрупким и неподходящим для механической обработки.

Только в 1925 году голландские химики ван Аркел и де Бур, применив термическое разложение иодида титана, не нашедшее широкого использования, получили вещество с 99,9% чистотой. Такой металл обладал пластичностью, его можно было раскатывать в листы, проволоку и фольгу.

Это позволило начать полномасштабное изучение физических и химических свойств, привлечь внимание инженеров и строителей, наметить сферы применения.

А уже в 1940 году появился кролловский процесс восстановления четырёххлористого титана магнием, успешно используемый и до сих пор.

Теории происхождения названия

Существует две теории возникновения наименования:

  • Первая, подчёркивающая основные свойства металла титана — лёгкость и прочность, связана с именем персонажа германской легенды — эльфийской царицы Титании.
  • Другая теория отсылает к древнегреческой мифологии, где титанами называли могучих братьев — божеств второго поколения, детей богов Урана и Геи. Отголоски этого слышатся и в названии элемента урана.

Титан занимает почётное четвёртое место по содержанию в земной коре среди важных для человека металлов, уступая только железу, магнию и алюминию.

Максимальное его количество сосредоточено в нижнем, базальтовом слое, немного меньше — в гранитном. Принимая во внимание высокую химическую активность, найти титан в чистом виде не представляется возможным.

Наиболее распространены четырёхвалентные оксиды, которые концентрируются в рудах коры выветривания и в морской глине.

Сегодня насчитывают до 75 титановых минералов, а учёные периодически заявляют об открытии всё новых форм и соединений. Для промышленной переработки наибольшее значение имеют:

  • Ильменит.
  • Лейкоксен (продукт изменения ильменита).
  • Рутил.
  • Титанит (сфен).
  • Перовскит.
  • Анатаз.
  • Титаномагнетит.
  • Брукит.

Титан — слабый мигрант, он может переноситься только в виде механических обломков каменной породы или при перемещениях коллоидных илистых слоёв водоёмов.

Для биосферы характерно содержание максимальных количеств этого металла в морских водорослях, у животных он обнаружен в шерсти и роговых тканях, в организме человека присутствует в щитовидной железе, селезёнке, надпочечниках и плаценте.

Месторождения космического материала

Самыми распространёнными являются залежи ильменита, они составляют порядка 800 млн тонн. Запасы рутиловых руд значительно меньше, но при сохранении роста добычи все они могут обеспечить человечество ещё на 100 лет.

По запасам титана Россия уступает только Китаю и насчитывает 20 разведанных месторождений. Большинство из них — комплексные, где добывают также железо, фосфор, ванадий и цирконий.

Сегодня крупнейшим мировым производителем титана считается российская металлургическая компания «ВСМПО-АВИСМА».

Обширные залежи располагаются на территории ЮАР, Украины, Канады, США, Бразилии, Австралии, Швеции, Норвегии, Египта, Казахстана, Индии и Южной Кореи.

Они различаются содержанием металла в рудах и объёмами добычи, геологические изыскания не прекращаются. Даже на Луне были обнаружены запасы титаносодержащих руд, некоторые из них в десятки раз богаче крупных месторождений Земли.

Это позволяет надеяться на снижение рыночных цен металла и расширение сферы использования.

Titanium — химический элемент периодической таблицы Менделеева, находится в IV группе четвёртого периода.

Имеет атомный номер 22, молярную массу 47,867, обозначается символом Ti и проявляет степени окисления от 2 до 4, наиболее устойчивы его четырёхвалентные соединения.

При нормальном давлении температура плавления титана равна 1670 ± 2 °C, он относится к цветным тугоплавким металлам и по внешнему виду напоминает сталь.

Твёрдость, пластичность и предел текучести — важные параметры для любого металла, которые определяют сферу применения. Титан в 12 раз прочнее алюминия, в 4 раза меди и железа.

А ещё он гораздо легче их всех (плотность титана всего 4,54 г/см 3) и свободно обрабатывается методами сварки, клёпки, ковки и проката.

К важным особенностям относятся низкие показатели теплопроводности и электропроводности, которые остаются неизменными даже при высоких температурах.

Титан проявляет парамагнитные свойства: не намагничивается в магнитном поле, подобно никелю и железу, и не выталкивается, как серебро и золото. Его плохие антифрикционные свойства обусловлены налипанием на многие материалы.

Уникальны показатели коррозионной стойкости и сопротивления механическому воздействию: пластины из титана, десять лет пролежавшие на дне моря, не претерпят изменений внешнего вида и состава, а железо за это время разложится полностью.

Способ получения из сырья

Исходное сырьё — двуокись титана, содержащая мало посторонних примесей. Для этого нужен рутиловый концентрат, получаемый обогащением руды.

Но его мировые запасы невелики, и чаще применяют титановый шлак (синтетический рутил), который получают термической обработкой — обогащением ильменитовых концентратов в электродуговой печи.

В результате железо в виде чугуна собирается на дне специальной ванны, и остаётся порошок серого цвета — шлак, содержащий оксид титана. Его измельчают, смешивают с углём, брикетируют и хлорируют в печах, где при 800 °C в присутствии углерода образуются пары четырёххлористого титана.

Потом их очищают и в специальных реакторах восстанавливают магнием при 950 °C. На стенках образуется спёкшаяся пористая масса, титановая губка, которую для сепарации от соединений магния прокаливают в вакууме.

Чтобы изготовить слитки титана используют плавку полученной губки в вакуумно-дуговых печах. Это предохраняет металл от окисления и способствует окончательному освобождению от примесей.

Готовые слитки с чистотой до 99,7% используют для обработки давлением (прокатка, штамповка, ковка).

Основные сферы применения

Сложно описать все области жизни, где нашлось место титану, но среди основных направлений можно отметить:

  • Главные потребители — аэрокосмическая отрасль и ракетостроение. Высокая температура плавления и лёгкость являются неоценимыми преимуществами титана при использовании в качестве «летающего» конструкционного материала. Для самолёта, например, это элероны и лонжероны, поворотные узлы крыльев, трубопроводы и шпангоуты. Глубоко символично, что в 1980 году установленный в Москве памятник Ю. А. Гагарину сделан из этого космического металла.
  • Судостроение тоже нуждается в лёгких и коррозионно-стойких материалах. В конце 70-х годов ХХ века практически весь годовой объем выпуска титана в Советском Союзе пошёл на создание ядерной подводной лодки, где он служил основным конструкционным материалом. Результатом стали снижение на одну треть веса субмарины, её парамагнетизм, максимальные показатели глубины погружения и скорости под водой.
  • Титановые пластины применяют в бронежилетах. Вес лёгкого бронежилета — 4 кг, тяжёлого — 10,5 кг. Даже одна такая полоса толщиной всего 5 мм надёжно защищает от пистолетных и ружейных пуль.
  • Металл незаменим для нужд химической промышленности ввиду антикоррозийной стойкости в большинстве агрессивных сред и при высоких температурах: приборы и трубопроводы, ёмкости хранения и перегонки, фильтры и запорная арматура.
  • Для придания сталям твёрдости и жаропрочности его используют как легирующую добавку.
  • Сплавы титана служат для изготовления режущих и хирургических инструментов, ювелирных изделий. Металл не отторгается человеческим телом, поэтому его применяют в медицине для создания имплантатов.
  • Издавна здания в европейских городах покрывались цинковыми листами. В ХХ веке для этих нужд был создан экологически чистый и долговечный материал цинк-титан. Его отличная пластичность помогает изготавливать кровли практически всех контуров и формировать любые нестандартные конструкции фасадов.
  • Производство стройматериалов, красок, резины, пластмасс, бумаги и пищевых добавок трудно представить без соединений титана. Они востребованы в электротехнике, их можно найти в составе тугоплавких стёкол и керамических деталей, в опорах буровых платформ, работающих в экстремальных морских условиях, и корпусах домашних компьютеров.

Сфера применения титана постоянно расширяется, её сдерживают сложность и энергоёмкость процесса получения чистого вещества. Отчасти поэтому традиционные железо и алюминий сегодня ещё прочно удерживают позиции. Титан — дорогое удовольствие.

Цена металла в виде концентрата в сотни раз меньше стоимости готовой продукции, например, листового проката.

Сегодня такие расходы доступны далеко не всем, поэтому применение титана определяет уровень экономического развития и обороноспособности государства.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.